Mona Salam | Engineering | Best Researcher Award

Dr. Mona Salam | Engineering | Best Researcher Award

Dr. Mona Salam | Unveristy Of Technology Sydney | Australia

Dr. Mona Salam is a Senior Lecturer in Construction Project Management at the University of Technology Sydney, bringing extensive expertise in interdisciplinary collaboration and resilient housing. Holding a PhD in Design Management from UTS, a Master of Engineering Studies in Construction Management from the University of Auckland, and a Bachelor in Civil (Structural) Engineering from Ain Shams University, she combines deep theoretical knowledge with practical engineering and academic leadership. Her teaching spans project strategy, construction technology, and professional practice, while her research focuses on collaborative design processes, inclusion in built environments, and climate resilience. Dr. Salam leads Women in Built Environment (WiBE), supporting hundreds of students through mentorship and development. Her work is driven by innovation and social equity, bridging academic rigour with real-world impact.

Profile

Orcid

Education 

Dr. Mona Salam’s academic journey reflects a strong interdisciplinary foundation in civil and construction engineering. She earned her Bachelor of Civil Engineering with a specialization in Structural Engineering from Ain Shams University in Cairo, equipping her with a robust understanding of engineering principles. She then pursued a Master of Engineering Studies in Construction Management at the University of Auckland, where she developed advanced skills in managing complex construction projects. Dr. Salam completed her PhD in Design Management at the University of Technology Sydney, where her doctoral research emphasized collaborative processes in construction design and delivery. This progression from technical engineering into construction management and design strategy has enabled her to approach project challenges holistically, integrating structural rigor with design coordination and management strategies.

Experience 

Dr. Salam’s academic career spans over a decade of progressive roles at the University of Technology Sydney. Beginning as a subject coordinator and tutor, she supported core modules in construction technology, project management, and structures. She then advanced to Lecturer in Built Environment, leading and delivering modules such as Managing a Construction Business and Project Management Integration. As a Senior Lecturer, she now coordinates courses in Project Strategy & Leadership, Construction Technology, and Professional Practice. Her leadership extends beyond teaching, contributing to key faculty committees including the DAB Faculty Board, Workload Committee, Education Quality Committee, and the First and Further Year Experience (FFYE) transition initiative. This combination of teaching excellence, curriculum innovation, and institutional service reflects her dedication to advancing both academic programs and the broader educational environment.

Research Interests

Dr. Salam’s research centers on enhancing interdisciplinary collaboration, inclusion, and resilience within the built environment. Her work in “Assessing Interdisciplinary Collaboration in the Detailed Design Phase of Construction Projects” (2024) uses practice-based inter-organisational theory to examine how trust, defined roles, and iterative cost alignment facilitate effective teamwork in complex design phases. In her chapter “Australian Case: Black Summer Bushfires” ), she developed a retrofit toolkit tailored for older Australians in bushfire-prone regions, based on case studies in Bega Valley and Noosa Shires. Funded by national grants, the toolkit addresses accessibility and resilience for vulnerable rural populations . Her broader interests encompass inclusive design, women’s experiences in construction education and workplace settings, and climate-resilient housing solutions shaped by community-centred methodologies.

Awards 

Dr. Mona Salam’s leadership and innovative teaching have been recognized through several recent honors. she received an Honourable Mention for Innovative Use of Technology and Learning in Education, highlighting her integration of advanced digital tools to enhance student engagement. That same year, she earned an Award for Academic Leadership, acknowledging her strategic contributions in curriculum development and student support. Beyond these accolades, Dr. Salam serves as Academic Lead for Women in Built Environment (WiBE), where she leads a strategic initiative supporting female students in Construction Project Management and Property Economics. Through the WiBE Canvas platform, she provides academic, professional, and wellness support, secures scholarships, and fosters industry partnerships—demonstrating her commitment to equity and community impact within the built environment sector.

Publication Top Notes

Developing Multi-Modal Communication Tools for Retrofit Guidance in Ageing Bushfire-Prone Communities

Collaboration in the Detailed Design Phase of Construction Projects – A Study of Interdisciplinary Teams

Exploring Interdisciplinary Collaboration in the Detailed Design Phase of Construction Projects

Exploring Interdisciplinary Collaboration in Construction: Phases and Patterns of Interaction in Detailed Design Meetings

Collaboration to Improve Constructability in Detailed Design Phase – Can BIM and Relational Contracting Help?

Conclusion 

Dr. Mona Salam exemplifies a forward-thinking academic whose work bridges technical expertise, collaborative innovation, and social equity in the built environment. With a solid educational foundation and progressive academic roles, she brings insight and leadership to construction management and design strategy. Her research push boundaries—from facilitating interdisciplinary collaboration and enhancing design delivery, to crafting climate-resilient solutions tailored for vulnerable communities. Recognized for her pedagogical innovation and leadership, Dr. Salam also champions inclusion and women’s advancement through WiBE. Her combined focus on resilience, equity, and collaboration positions her as a visionary contributor to both academia and practice, making her an outstanding nominee for any award recognizing excellence and impact in construction education and research.

Xueliang wang | Engineering | Best Researcher Award

Dr. Xueliang wang | Engineering | Best Researcher Award

Dr. Xueliang wang | NingboTech University | China

Dr. Xueliang Wang is a promising early-career scholar serving as a Lecturer at NingboTech University, affiliated with Zhejiang University. With a solid academic foundation and focused expertise in mechanical engineering and energy systems, he has established himself as a rising leader in the study of dynamic sealing systems for hydrogen fuel cells. He brings a global perspective to his research, having participated in a Joint Ph.D. Training Program at Blekinge Institute of Technology in Sweden. Since joining NingboTech University, Dr. Wang has excelled in both teaching and research, delivering impactful contributions in foil seal dynamics, gas lubrication mechanisms, and mechanical system reliability. His work addresses critical engineering challenges in advancing hydrogen energy technologies. An active member of the Communist Party, Dr. Wang embodies a commitment to public service, academic leadership, and the pursuit of innovative solutions that bridge theoretical research and industrial application.

Profile

Scopus

Education & Professional Experience

Dr. Xueliang Wang earned his Ph.D. in Engineering through a joint program between Blekinge Institute of Technology (BTH), Sweden, and a Chinese institution, gaining valuable international exposure that shaped his research trajectory in high-performance fuel cell sealing systems. He serves as a Lecturer at NingboTech University, affiliated with Zhejiang University, where he teaches core engineering subjects including Engineering Graphics (B), Numerical Computation Methods, and Elastic Mechanics. His responsibilities extend to mentoring student research projects and contributing to institutional development. Dr. Wang has established strong collaborations with industry partners, leading multiple enterprise-funded and government-supported research projects. His work focuses on innovative sealing technologies, dynamic gas lubrication mechanisms, and leakage reduction strategies for advanced hydrogen fuel cell systems. Combining excellence in teaching with impactful applied research, he is recognized as a well-rounded academic who bridges theoretical engineering knowledge with practical, industry-driven innovation.

Research Interests

Dr. Wang’s primary research interest lies in dynamic foil sealing technologies for fuel cell systems, with broader applications in hydrogen-air compressors, marine sealed pumps, and gas film lubrication mechanisms. His work explores interfacial gas lubrication, surface roughness effects, and heterogeneous material compatibility to improve sealing performance under extreme conditions. These studies are critical for advancing the safety, reliability, and efficiency of clean energy technologies, particularly in hydrogen fuel cell systems. He is especially focused on the flow evolution mechanisms and leakage control under dynamic excitation, which are vital for optimizing fuel cell longevity and environmental compliance. His current portfolio includes five funded research projects from provincial and municipal bodies, addressing issues from nonlinear seal dynamics to PTV diaphragm box seals. Through both theoretical modeling and experimental validation, Dr. Wang’s research delivers actionable insights to industry partners and contributes to the advancement of sustainable engineering technologies.

Awards

Dr. Wang has received multiple prestigious awards. Most notably, he earned the First Prize in University Teaching Achievement Awards, showcasing his dual excellence in pedagogy and content delivery. His paper was honored with the Excellent Paper Award at the 14th National Conference on Dry Gas Seals, a notable accolade in the mechanical engineering community that affirms the originality and applicability of his work in foil gas film seals. His selection for multiple provincial-level projects also reflects peer and institutional recognition of his research capability and leadership. Furthermore, his rapid ascent in academia, marked by six published research papers, two patent applications, and several research grants, underscores his status as a rising star in the fields of hydrogen energy and precision mechanical design. These honors highlight both his technical expertise and his contribution to national research priorities.

Publications Top Notes

Title: A Photothermal-Responsive and Glucose-Responsive Antibacterial Hydrogel Featuring Tunable Mechanical Properties
Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Authors: Wang Xueliang,

Title: Acoustic Emission Signal Characteristics of Flexible Foil Gas Film Seal Under Actual Surface Conditions
Journal: Tribology Transactions  – EI Indexed
Authors: Wang Xueliang,

Title: Turbulent Characteristics Analysis of Flexible Foil Cylindrical Gas Film Seal Considering Surface Roughness
Journal: CIESC Journal  – EI Indexed
Authors: Wang Xueliang,

Conclusion

Dr. Xueliang Wang’s professional trajectory, marked by a combination of international research exposure, pedagogical excellence, and innovative project execution, makes him a strong candidate for the Best Researcher Award. His contributions to the development of high-efficiency fuel cell seal systems directly support the advancement of sustainable hydrogen energy technologies—an area of global strategic importance. With multiple active research grants, high-quality publications, and recognized teaching success, Dr. Wang exemplifies the qualities of a forward-thinking and impactful researcher. His ability to integrate theory with real-world application, especially through collaborations with industry and government projects, showcases leadership, relevance, and innovation. Recognizing his work with this award will not only honor his achievements but also spotlight an emerging leader dedicated to engineering a cleaner, more efficient energy future.