Dr. Kicheol Lee | Engineering | Best Researcher Award
Dr. Kicheol Lee | Halla University/RISE Project Group | South Korea
Dr. Kicheol Lee is a research professor specializing in civil and structural engineering, with a strong record in foundation engineering, numerical modelling, and new technology development. His work spans artificial intelligence (machine learning, deep learning), probabilistic and statistical methods, field applications in geotechnical/tunnel/foundation engineering, and reliability-based design (LRFD). He has been recognized with multiple best paper and presentation awards from the Korea Geosynthetics Society and the Korea Geotechnical Society. His expertise in numerical simulation (particularly via ABAQUS), and integration of AI/ML with civil engineering systems, has made him a leading figure in predictive modeling, anomaly detection, and structural reliability. Dr. Lee’s contribution lies in bridging advanced computational methods with practical engineering challenges, especially in ensuring safety, resilience, and sustainability of infrastructure. Dr. Lee’s current research is deeply interdisciplinary, merging geotechnical engineering, structural health monitoring, and intelligent systems to create safer, data-driven infrastructure solutions.His ongoing work under the Gangwon RISE Project aims to transform urban safety and sustainability by employing augmented and virtual reality technologies for real-time disaster visualization and early warning.
Author’s Profile
Scopus | Orcid
Early Academic Pursuits
Dr. Kicheol Lee began his academic journey in Civil and Environmental Engineering at Incheon National University, where he earned his Bachelor’s degree (2015), Master’s degree (2017), and Doctorate (Ph.D., 2021). His early research concentrated on geotechnical and foundation engineering, particularly the mechanical behavior of pile groups and the evaluation of soil–structure interactions through numerical and experimental methods. His doctoral dissertation, “Evaluation of Resistance Factors of Pile Groups Consisting of Drilled Shafts Embedded in Sandy Ground under Axial Load through Numerical Analysis,” established his expertise in reliability-based foundation design (LRFD) and computational modeling using ABAQUS, laying the groundwork for his later innovations in smart infrastructure systems.