Dinesh Babu M | Engineering | Best Researcher Award

Dr. Dinesh Babu M | Engineering | Best Researcher Award

Rajalakshmi Institute of technology | India 

Dr. M. Dinesh Babu, B.E., M.Tech., Ph.D., is a distinguished academic and researcher recognized among the Top 2% Scientists Worldwide in the subfield of Energy for the year 2023 by Elsevier and Stanford University. He holds a Ph.D. in Energy Systems Engineering from the College of Engineering, Anna University, Chennai, where his doctoral research focused on “Studies on the Effect of Internal Longitudinal Fins and Nanoparticles on the Performance of Solar Flat Plate Collectors.” He also holds an M.Tech. in Energy Systems Engineering from Vellore Institute of Technology (VIT), Vellore, and a B.E. in Mechanical Engineering from Sriram Engineering College, University of Madras, both with First Class distinction. With over 21 years of teaching and research experience, Dr. Dinesh Babu has served in reputed institutions such as Dr. M.G.R. University, Sathyabama University, R.M.K. Engineering College, Panimalar Engineering College, and currently, as a Professor at Rajalakshmi Institute of Technology, Chennai. His academic contributions encompass teaching core subjects like Heat and Mass Transfer, Thermodynamics, Thermal Engineering, Power Plant Engineering, Machine Design, Manufacturing Technology, Environmental Science, and Entrepreneurship Development. Dr. Babu has an outstanding research profile with 93 publications in Scopus, SCI, and Web of Science-indexed journals, achieving a cumulative impact factor of 302.54. His research has garnered over 3,500 citations on Google Scholar (h-index: 32, i10-index: 52), 3,177 citations on Scopus (h-index: 31), and 2,978 citations with 15,220 reads on ResearchGate. He has also published two patents and has four ongoing research papers under review. He currently supervises four Ph.D. research scholars registered under Anna University (Supervisor ID: 3120042). His research interests include renewable energy systems, solar thermal engineering, nanofluids, biofuels, combustion and emission analysis, and sustainable manufacturing. Dr. Babu has designed innovative projects such as a 50 LPD copper solar water heater with a ladder-type heat exchanger and has secured funding through initiatives like the RIT-FIT Seed Money Fund and a SERB project proposal worth ₹16.1 lakhs. An active academic contributor, Dr. Babu serves as a Doctoral Committee Member at Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, and frequently participates as a resource person and reviewer for journals and research programs. He has completed multiple Elsevier Research Academy certifications on topics such as producing highly visible research, academia–industry collaboration, journal impact metrics, and open hardware innovation. Dr. M. Dinesh Babu’s exemplary academic dedication, prolific research output, and consistent pursuit of innovation in the field of energy systems engineering have earned him a reputation as one of India’s leading scholars in sustainable and renewable energy technologies.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Yuvarajan, D., Babu, M. D., Beem Kumar, N., & Kishore, P. A. (2018). Experimental investigation on the influence of titanium dioxide nanofluid on emission pattern of biodiesel in a diesel engine. Atmospheric Pollution Research, 9(1), 47–52.

Radhakrishnan, S., Munuswamy, D. B., Devarajan, Y., T., A., & Mahalingam, A. (2018). Effect of nanoparticle on emission and performance characteristics of a diesel engine fueled with cashew nut shell biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40, 1–10.

Sathiyamoorthi, R., Sankaranarayanan, G., Munuswamy, D. B., & Devarajan, Y. (2021). Experimental study of spray analysis for Palmarosa biodiesel‐diesel blends in a constant volume chamber. Environmental Progress & Sustainable Energy, 40(6), e13696.

Devarajan, Y., Munuswamy, D. B., & Mahalingam, A. (2018). Influence of nano-additive on performance and emission characteristics of a diesel engine running on neat neem oil biodiesel. Environmental Science and Pollution Research, 25(26), 26167–26172.

Devarajan, Y., Munuswamy, D. B., Nagappan, B., & Pandian, A. K. (2018). Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine. Heat and Mass Transfer, 54(6), 1803–1811.

Devarajan, Y., Munuswamy, D. B., & Mahalingam, A. (2019). Investigation on behavior of diesel engine performance, emission, and combustion characteristics using nano-additive in neat biodiesel. Heat and Mass Transfer, 55(6), 1641–1650.

Pandian, A. K., Munuswamy, D. B., Radhakrishnan, S., & Devarajan, Y. (2018). Emission and performance analysis of a diesel engine burning cashew nut shell oil biodiesel mixed with hexanol. Petroleum Science, 15(1), 176–184.

Devarajan, Y., Mahalingam, A., Munuswamy, D. B., & Arunkumar, T. (2018). Combustion, performance, and emission study of a research diesel engine fueled with palm oil biodiesel and its additive. Energy & Fuels, 32(8), 8447–8452.

Xilai li | Engineering | Best Researcher Award

Mr. xilai li | Engineering | Best Researcher Award

Mr. xilai li | Nanjing University of Aeronautics and Astronautics | China

Mr. Li Xilai, a 25-year-old postgraduate student at Nanjing University of Aeronautics and Astronautics, is pursuing a Master’s degree in Mechanical Engineering at the School of Aeronautics, following his Bachelor’s degree in Aircraft Manufacturing Engineering from the Civil Aviation University of China. His academic foundation covers a wide range of aeronautical subjects, including theoretical mechanics, fluid mechanics, structural dynamics, computational aerodynamics, aeroengine principles, and aeronautical systems engineering. He has developed strong technical expertise in advanced engineering software such as ABAQUS, OPENFAST, VABS, BECAS, Bladed, MATLAB, CAD, SolidWorks, and Origin, along with proficiency in programming languages including Python, MATLAB, and FORTRAN. His research interests center on nonlinear blade modeling, aeroelastic response, and vibration suppression in large-scale wind turbines. He has actively contributed to projects such as offshore wind power integrated numerical simulation software evaluation and flow control simulations for blades and airfoils. His innovative research has resulted in two patent applications related to vibration reduction in wind turbine systems and floating platforms. He has also shared his work at prestigious conferences, presenting on topics such as tuned mass-damper inertia systems for vibration control and the influence of control parameters on flutter boundaries in wind turbines. Recognized as an excellent graduate student and outstanding research leader, he combines strong analytical ability with leadership and teamwork. Optimistic, adaptable, and highly motivated, he demonstrates a strong commitment to advancing renewable energy technologies, particularly in offshore wind engineering, while contributing innovative solutions to future challenges in aerospace and energy systems.

Featured Publications

Li Xilai. Numerical Optimization of Tuned Mass-Damper Inertia Systems for Vibration Control in Wind Turbines. China Aerodynamics Conference Proceedings, cited by 8 articles.

Li Xilai. Influence of Control Parameters on Flutter Boundary of Large Horizontal-Axis Wind Turbines. Mechanics & Renewable Energy Forum Proceedings, cited by 5 articles.

Alejandro Medina Santiago | Engineering | Outstanding Scientist Award

Dr. Alejandro Medina Santiago | Engineering | Outstanding Scientist Award

Secretariat of Science, Humanities, Technology and Innovation | Mexico

Dr. Alejandro Medina Santiago is a Mexican researcher in Electrical Engineering, specializing in VLSI integrated circuit design, neural networks, fuzzy logic, intelligent systems, and Industry 4.0 technologies. He earned his Doctor of Science and Master of Science degrees in Electrical Engineering from the Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), where his doctoral research focused on the design of arithmetic cells using multi-input floating gate devices for reconfigurable circuits in image processing and pattern recognition, and his master’s thesis concentrated on neural network-based classification systems for analog signals. He also holds a degree in Electronics Engineering from the Technological Institute of Tuxtla Gutiérrez. Since 2017, he has been a Researcher at the National Institute of Astrophysics, Optics, and Electronics (INAOE) and is a member of Mexico’s National System of Researchers (SNI Level 1, 2021–2025). His areas of expertise include signal processing, IoT, cybersecurity, deep learning, automotive ecosystem diagnostics, and circuit design. Dr. Medina Santiago has directed and participated in numerous projects, including deep neural networks for automotive systems, automotive embedded platforms, IoT educational initiatives, and agricultural disease detection through georeferenced image processing. He has authored more than 20 indexed journal articles, published a book, and holds four patents in process. Additionally, he contributes as a reviewer and editorial board member for IEEE, MDPI, Springer, and Elsevier. A committed educator, he teaches both undergraduate and postgraduate courses on IoT, artificial intelligence, machine learning, electronics, and intelligent control, while actively mentoring future engineers and researchers.

Profile: Orcid

Featured Publications

Medina-Santiago, A., et al. (2025). Machine Learning-Powered IDS for Gray Hole Attack Detection in VANETs. World Electric Vehicle Journal, 16(9), 526. [DOI: 10.3390/wevj16090526]

Orozco Torres, J. A., Medina Santiago, A., et al. (2025). A Data-Driven Approach Using Recurrent Neural Networks for Material Demand Forecasting in Manufacturing. Logistics, 9(3), 130. [DOI: 10.3390/logistics9030130]

Aguilar-González, A., Medina Santiago, A. (2025). Road Event Detection and Classification Algorithm Using Vibration and Acceleration Data. Algorithms, 18(3), 127. [DOI: 10.3390/a18030127]

Orozco Torres, J. A., Medina Santiago, A., et al. (2024). Multilayer Fuzzy Inference System for Predicting the Risk of Dropping Out of School at the High School Level. IEEE Access, 12, 3425548. [DOI: 10.1109/ACCESS.2024.3425548]

Bermúdez Rodríguez, J. I., Medina Santiago, A., et al. (2024). Fault Diagnosis for Takagi-Sugeno Model Wind Turbine Pitch System. IEEE Access, 12, 3361285. [DOI: 10.1109/ACCESS.2024.3361285]

Junyu Li | Engineering | Best Researcher Award

Dr. Junyu Li | Engineering | Best Researcher Award

Dr. Junyu Li | Huazhong University of Science and Technology | China

Dr. Junyu Li is an accomplished engineer whose career has been devoted to advancing the control of mechanical vibrations and mitigating noise through cutting-edge materials and acoustic designs. Their work stands at the intersection of engineering innovation and practical application, especially in underwater acoustics and metamaterial-based noise control. Driven by a pursuit of both fundamental understanding and impactful outcomes, Li has combined theoretical insight with experimental verification to develop solutions that address longstanding challenges in acoustic insulation. Known for a collaborative spirit and a clear vision, Li’s contributions span laboratory prototypes to peer-reviewed studies that have resonated within the scientific community. This profile reflects a professional deeply committed to excellence, interdisciplinary collaboration, and the transformative potential of intelligent acoustic control.

Profile

Orcid

Education

Dr. Junyu Li earned the highest degree in engineering, focusing on intelligent approaches to controlling mechanical vibration and noise, as well as acoustic metamaterials and underwater acoustics. Their academic path integrated rigorous coursework, advanced theoretical training, and hands-on experimental work in acoustics engineering. From foundational studies through doctoral research, Li mastered methods of designing and analyzing metamaterial structures, acoustic insulation devices, and underwater wave control systems. This educational journey fostered not only technical depth but also creative problem-solving skills, nurturing the ability to design novel materials with tailored acoustic properties. Such preparation underpins Li’s capacity to contribute both to the scientific literature and to practical engineering applications.

Experience

Dr. Junyu Li has engaged in diverse roles that merge research, teaching, and engineering design. They have led laboratory projects exploring the behavior of rubber-based membranes, vibration-based phononic structures, and shaped mass-loaded metamaterials. Collaborating with colleagues from materials science, mechanical engineering, and acoustics, Li has developed prototypes and conducted experimental validations that have informed both academic publications and inventive solutions. Their experience includes presenting findings at conferences, supervising student researchers, and guiding experimental setups across interdisciplinary teams. Through these experiences, Li has cultivated strong leadership, clear communication, and the ability to translate complex acoustic theories into functional designs that advance both knowledge and practical outcomes.

Research Interests

Dr. Junyu Li’s primary research interests center on intelligent control of mechanical vibration and noise through acoustic metamaterials, with particular emphasis on membrane-based designs, phononic crystal structures, and underwater acoustics. They explore how particle-reinforced membranes can enhance transmission loss, how composite vibrator arrays can yield predictable band gaps, and how mass-loaded membranes of varied shapes and densities can improve sound insulation. Li is motivated by the challenge of engineering materials that can selectively block or attenuate sound in targeted frequency ranges while maintaining structural feasibility and adaptivity to dynamic environments. This line of inquiry holds promise for quieter machinery, stealthier underwater platforms, and noise mitigation systems that are both efficient and tunable.

Publication Top Notes

Hypothesis of Polymer Molecular Networks: Predicting Underwater Mechano-Acoustic Properties

Journal: International Journal of Mechanical Sciences
Authors: Jun-Yu Li,  Jia-xuan Wang, Zhuang Li, Qi-Bai Huang, Zhi-Fu Zhang

A Cross-Scale Acoustic Computational Approach for Micro-Macro Mode Mapping to Facilitate the Development of High-Performance Underwater Two-Phase Composites

Journal: Journal of Materials Research and Technology
Authors: Jun-Yu Li, Qi-Bai Huang

Theory and Optimization of Double-Walled Carbon Nanotube Reinforced Rubber Composites for Underwater Sound Absorption

Journal: Results in Engineering
Authors: Junyu Li, Xiaomeng Li, Siyang Li, Shande Li, Zhifu Zhang

Optimization Design of Multi-Blade Centrifugal Fan Based on Variable Weight PSO-BP Prediction Model and Multi-Objective Beluga Optimization Algorithm

Journal: Applied Sciences
Authors: Wenyang Jin, Jiaxuan Wang, Junyu Li, Ren Xu, Ming Zhou, Qibai Huang

Sound Insulation Prediction and Band Gap Characteristics of Four Vibrators Acoustic Metamaterial with Composite Phononic Crystal Structure

Journal: Materials Today Communications
Authors: Junyu Li, Xiaowen Wu, Chenlin Wang, Qibai Huang

Conclusion

Dr. Junyu Li’s career embodies a rare combination of theoretical depth, innovative experimentation, and practical relevance in the field of acoustic metamaterials and noise control. Through a comprehensive educational foundation, diversified experience, and a clear research vision, Li has produced scholarly work that not only advances fundamental understanding but also points toward real-world engineering applications. Their publications reflect a consistent trajectory of originality, technical rigor, and interdisciplinary impact. Awarding Dr. Li would recognize not just past achievements but also the potential for continued leadership in developing intelligent acoustic materials that address critical challenges in mechanical vibration, noise mitigation, and underwater acoustics. Their trajectory merits such recognition and support as they continue to shape the future of acoustic engineering.

Iman Asadi | Engineering | Best Paper Award

Dr. Iman Asadi | Engineering| Best Paper Award

Dr. Iman Asadi | University for Continuing Education Krems |Austria

Dr. Iman Asadi, Ph.D., is a committed and multifaceted researcher in the built environment and materials science, currently advancing the field as a Senior Postdoctoral Researcher in Austria and a Visiting Researcher in Australia. Rooted in a solid foundation in mechanical engineering, Dr. Asadi has cultivated expertise spanning thermal behavior of cementitious materials, indoor environmental quality, and the integration of sustainable and waste-derived components into construction practices. Driven by a passion for merging experimental rigor with sustainable innovation, Dr. Asadi pursues interdisciplinary projects across continents, contributing to greener building systems through both applied research and scholarly collaboration..

Profile

Googlescholar

Education

Dr. Asadi’s academic trajectory began with a mechanical engineering bachelor’s degree earned at Azad University of Iran, laying a strong technical foundation in thermofluid systems. The pursuit of specialized knowledge continued with a Master of Science in Mechanical Engineering from University Tenaga Nasional in Malaysia, where the focus was on indoor environmental quality consciousness in air-conditioned buildings. Culminating with a Ph.D. in Building Science and Performance from University of Malaya, Dr. Asadi’s doctoral research rigorously evaluated the thermal properties of cementitious mortars incorporating sustainable byproducts, thereby bridging fundamentals of heat transfer with sustainable material development.

Experience

Dr. Asadi’s professional path weaves across academia and applied research. After roles as mechanical designer and research assistant in Iran and Malaysia, he progressed to postdoctoral positions including at the University of Tehran, emphasizing building envelope thermal dynamics and energy modeling. At NTNU in Norway, he explored porosity in cement-based materials via CT scanning and analyzed freeze–thaw durability in sustainable concrete. Since mid-2023, he has served as a Senior Postdoc in Krems, Austria, overseeing projects in manure phosphorus analytics and silicon recovery from photovoltaic panels, and since late 2024, he has expanded his research scope as a Visiting Researcher in Melbourne, Australia, focusing on fire-resistant and phase change materials.

Research Interests

Dr. Asadi’s research lies the thermal characterization and sustainability of cement-based materials, emphasizing the integration of industrial byproducts and PCMs to optimize building performance. His interests include the microscopic and macroscopic porosity of mortars, analyzed through CT-based 3D image processing, as well as heat-transfer phenomena in cementitious media. He is deeply invested in innovating resilient building envelopes, improving indoor environmental quality, and pioneering circular-economy approaches—such as phosphorus recovery and silicon recycling—while advancing methods to assess and enhance material durability, environmental impact, and thermal efficiency.

Awards

Dr. Asadi’s innovative research has been recognized through multiple prestigious accolades. His proposal on geopolymer composites incorporating waste and PCMs earned the European Commission’s Seal of Excellence in consecutive years, underscoring its high scientific and societal merit. Earlier, his inventive work in Malaysia was celebrated with gold awards at both the international research innovation exposition and the invention, design, and innovation competition. Additionally, he was a winner of his university’s three-minute thesis contest and has been supported by national and university-level research grants, including from the National Elites Foundation of Iran and various Malaysian funding bodies.

Publications Top Notes

Thermal conductivity of concrete – A review

Journal: Journal of Building Engineering
Authors: I. Asadi, P. Shafigh, Z.F.B.A. Hassan, N.B. Mahyuddin

Concrete as a thermal mass material for building applications – A review

Journal: Journal of Building Engineering
Authors: P. Shafigh, I. Asadi, N.B. Mahyuddin

Thermal properties of cement mortar with different mix proportions

Journal: Materiales de Construcción
Authors: P. Shafigh, I. Asadi, A.R. Akhiani, N.B. Mahyuddin, M. Hashemi

A review on indoor environmental quality (IEQ) and energy consumption in building based on occupant behavior

Journal: Facilities
Authors: I. Asadi, N. Mahyuddin, P. Shafigh

Drying shrinkage properties of expanded polystyrene (EPS) lightweight aggregate concrete: A review

Journal: Case Studies in Construction Materials
Authors: M. Maghfouri, V. Alimohammadi, R. Gupta, M. Saberian, P. Azarsa

Conclusion

Dr. Iman Asadi exemplifies the modern researcher: globally mobile, deeply interdisciplinary, and observant of both micro-scale physical processes and macro-scale sustainability challenges. With a rich background in mechanical and building sciences, he seamlessly merges experimental materials work—such as thermal testing and CT image-based porosity analysis—with applications ranging from environmental quality improvements to resource-recycling innovations. His recognized achievements, international collaborations, and robust publication record position him as an influential contributor to evolving sustainable and resilient built-environment solutions.

Hassan Adamu Abubakar | Engineering | Best Researcher Award

Mr. Hassan Adamu Abubakar | Engineering | Best Researcher Award

Mr. Hassan Adamu Abubakar | Advanced Manufacturing Technology Development institute Jalingo | Nigeria

Mr. Adamu Hassan Abubakar is a dedicated Nigerian engineer and researcher whose passion lies in sustainable development through advanced materials science and minerals engineering. He currently serves as Assistant Chief Engineer at the Advanced Manufacturing Technology Development Institute (AMTDI) in Jalingo under NASENI and also contributes as a part-time lecturer at Taraba State University and visiting faculty at AUST, Abuja. With over a decade of academic and industrial engagement, Mr. Adamu has significantly impacted solid minerals research in Nigeria, especially in barite ore processing and refractory ceramics. A hands-on professional, he also mentors engineering students and conducts capacity-building workshops. His expertise ranges from material characterization and composite fabrication to nanoscale fracture mechanics. Adamu is known for his blend of practical engineering problem-solving and innovative R&D approaches, making him a fitting candidate for international recognition in minerals engineering.

Profile

Orcid

Education

Mr. Adamu Hassan Abubakar’s academic journey reflects a strong commitment to engineering excellence. He earned his Bachelor of Engineering in Mechanical Engineering from the Federal University of Technology Yola in 2011 and went on to complete a Master of Engineering in Production and Industrial Engineering at Modibbo Adama University of Technology Yola in 2019. He is currently pursuing his Ph.D. in Materials Science and Engineering at the African University of Science and Technology (AUST), Abuja, expected to complete in 2026. His doctoral research focuses on multiscale fracture and crystallographic behavior of barite ore, aimed at enhancing mineral recovery technologies. His solid educational foundation, complemented by certifications in data science, computer appreciation, and project-based learning in the U.S., equips him with interdisciplinary skills essential for innovation in engineering research and development.

Experience

Mr. Adamu brings a rich blend of academic and field experience. Currently, he is Assistant Chief Engineer at AMTDI–NASENI, leading material assessment, internal quality assurance, and mentoring roles since 2021. Earlier, he served as Senior Engineer (2018–2021), driving research on mechanical parts using CAD software. He also shares his knowledge as a part-time lecturer at Taraba State University (2021–2023) and visiting faculty at AUST Abuja (2024–present). His professional contributions include mentoring undergraduate researchers, conducting laboratory experiments on barite, and guiding R&D strategy design. Through affiliations with mineral research groups like DAF Materials and Mineral Research Group and AUST Baryte Research Group, Adamu maintains a robust connection between academia and applied research. He demonstrates exceptional ability to merge field operations with scholarly insight, strengthening Nigeria’s mineral processing sector.

Research Interests

Mr. Adamu’s research is deeply rooted in the sustainable utilization of solid minerals and advanced materials development. His core areas include the characterization of barite ore, production of ceramic composites, and crystallographic studies for mineral liberation. His ongoing Ph.D. dissertation delves into nanoscale fracture behavior of barite minerals to improve separation and recovery in mineral processing. He is also involved in innovative projects such as the valorization of clay, paper sludge, rice husk, and bagasse for low-cost bricks, contributing to green engineering and affordable housing. His research group affiliations and participation in international conferences display his commitment to advancing material science for energy-efficient and environmentally friendly solutions. His work directly supports Nigeria’s goal of mineral resource beneficiation and domestic industrialization.

Awards & Recognition

Mr. Adamu has been consistently recognized for his commitment to academic and professional excellence. He is a Fellow of COMPASS USA (2025) and holds a Professional Diploma in Data Science (2025). Earlier accolades include the Certificate of Achievement in Project Citizen (USA, 2002) and National Certificate of Service (NYSC, 2012). His early foundation in computing was laid at ABTI American University (2007), and his scientific aptitude was acknowledged with a Certificate of Award by the NMC Center, Abuja . He is a registered member of esteemed bodies like COREN (2018), Nigerian Institute of Mechanical Engineers (2022), and Nigerian Association of Technologists in Engineering (2012). These recognitions underscore his dual excellence in academic leadership and field innovation, aligning him with national and international research objectives in engineering.

Publications Top Notes

Mechanical Loading of Barite Rocks: A Nanoscale Perspective

Gravity concentration of fine particles complex ores-containing baryte using laboratory-built mineral jig

Production and optimization of the refractory properties of blended Nigerian clay for high-temperature application; a non-stochastic optimization approach

Conclusion

Mr. Adamu Hassan Abubakar is an accomplished engineer and researcher, committed to fostering mineral-based technological innovations with practical, scalable impacts. His contributions to barite mineral processing, sustainable materials development, and academic mentoring make him a strong candidate for the International Research Award in Minerals and Materials Engineering. With a unique combination of technical expertise, academic rigor, and community engagement, he stands out as a leader shaping the future of minerals research in Africa. His interdisciplinary outlook, cross-institutional teaching, and collaborative research projects make him well-positioned to receive global recognition for his innovative work in sustainable mineral utilization and capacity development.

Haowei Zhang | Engineering | Best Researcher Award

Dr. Haowei Zhang | Engineering | Best Researcher Award

Ph.D student, The University of Hong Kong, Hong Kong.

👨‍🔬 Haowei Zhang is a dynamic researcher specializing in structural health monitoring, concrete structure damage detection, and computer vision-based bridge Weight-In-Motion (WIM) systems. With a Ph.D. in progress at The University of Hong Kong, he has made significant contributions through cutting-edge research and impactful publications in top-tier journals. Haowei’s work spans deep learning, machine learning, and advanced imaging techniques for infrastructure health assessment, making him a standout researcher in civil engineering.

Profile

Google Scholar

Education 🎓

Dr. Haowei Zhang is a current Ph.D. student in Civil Engineering at The University of Hong Kong, under the supervision of Prof. Ray Kai Leung Su. His doctoral research builds on his expertise in bridge safety performance and vehicle non-contact weigh-in-motion (WIM) technology. He holds a Master’s degree in Civil Engineering from Southeast University, where he focused on the safety performance of bridges, supervised by Prof. Gang Wu and Prof. Kang Gao. Prior to that, he earned his Bachelor’s degree from Northeastern University in China, with a thesis on experimental building design supervised by Prof. Zhechao Wang. During his undergraduate studies, he also attended a summer training program at the University of Oxford, where he explored micromechanics and its applications in liquid metal 3D printing.

Experience 💼

Dr. Haowei Zhang is currently pursuing a Ph.D. in Civil Engineering at The University of Hong Kong, supervised by Prof. Ray Kai Leung Su. He holds a Master’s degree in Civil Engineering from Southeast University, where his research focused on vehicle non-contact weigh-in-motion (WIM) technology and the safety performance of bridges. Additionally, he earned his Bachelor’s degree from Northeastern University, specializing in experimental building design.

Professionally, Dr. Zhang serves as a Junior Researcher at Dongqu Intelligent Transportation Infrastructure Technology (2023-present), where he contributes to the development of computer vision models and equipment for transportation infrastructure. He has also led research projects on bridge monitoring, concrete structure damage detection, and deep learning algorithms for weight identification. During his master’s studies, he worked as a part-time college psychological counselor at Southeast University, providing psychological support and managing data files for graduate students.

His work uniquely combines civil engineering, intelligent transportation systems, and mental health advocacy.

Research Interests 🔬

Haowei Zhang’s research interests lie in structural health monitoring, computer vision-based WIM systems, deep learning, machine learning applications in civil engineering, and non-contact vehicle weight identification. His work focuses on developing innovative solutions for monitoring the integrity of concrete structures and enhancing safety through advanced image processing and data analysis.

Awards 🏆

International Exhibition of Inventions of Geneva – Silver Prize (2024)
Honor of Individual Academic Innovation – Southeast University (2023)
First-Class Academic Scholarship – Southeast University (2021)
Outstanding Undergraduate Student of Liaoning Province (2021)
National Scholarship (2020)

Publications Top Notes 📄

Automatic crack detection on concrete and asphalt surfaces using semantic segmentation network with hierarchical Transformer, Engineering Structures, 2023 Cited by: 45. link

Non-contact vehicle weight identification method based on explainable machine learning models and computer vision, Journal of Civil Structural Health Monitoring, 2023 Cited by: 20. link

Fully decouple convolutional network for damage detection of rebars in RC beams, Engineering Structures, 2023 Cited by: 25. link

A machine learning and game theory-based approach for predicting creep behavior of recycled aggregate concrete, Case Studies in Construction Materials, 2022 Cited by: 35. link