Prof. Xiaoli Zhang | Solar Cells | Best Researcher Award

Prof. Xiaoli Zhang | Solar Cells | Best Researcher Award

Guangdong University of Technology, China.

Prof. Xiaoli Zhang is a leading researcher in materials physics and chemistry, specializing in perovskite solar cells, LEDs, and quantum dots. She is currently a Professor at the School of Physics and Optoelectronic Engineering, Guangdong University of Technology. With extensive experience in advanced optoelectronic materials, her work focuses on smart lighting and next-generation energy solutions.

Profile

Scopus

🎓 Education

Prof. Xiaoli Zhang earned her Ph.D. in Materials Physics and Chemistry from Tianjin University, China, in 2014, where she focused on advanced materials for energy and optoelectronic applications. Prior to that, she completed her Master of Engineering (M.E.) in Materials Physics and Chemistry at Tianjin University in 2010, gaining a strong foundation in material synthesis, characterization, and functional applications. Her academic background has played a crucial role in shaping her expertise in perovskite solar cells, LEDs, and quantum dot materials, contributing to significant advancements in the field of optoelectronic engineering.

🔬 Research Experience

Prof. Xiaoli Zhang has an extensive research background in materials science and optoelectronics. Since 2021, she has been a Professor at Guangdong University of Technology, China, where she leads research in perovskite solar cells, LEDs, and quantum dots, contributing to advancements in next-generation energy and lighting technologies.

From 2018 to 2020, she served as a Research Assistant Professor at Southern University of Science and Technology, China, focusing on the development of quasi-2D perovskites and their application in wearable perovskite LEDs, enhancing the efficiency and stability of flexible optoelectronic devices.

Prior to that, from 2015 to 2018, she was a Postdoctoral Scholar at Nanyang Technological University, Singapore, where she conducted in-depth research on impurity phase control in perovskite materials and optimized high-efficiency LED fabrication techniques, paving the way for improved device performance and commercial applications.

🔍 Research Interests

Perovskite Solar Cells & LEDs – High-efficiency, stable energy devices

Quantum Dots – Applications in lighting and display technology

Smart Lighting – Development of next-generation lighting solutions

Energy Storage & Conversion – Sustainable and high-performance materials

🏆 Awards & Honors

🥇 First Prize, Natural Science in Guangdong Province (2022)

🎖 Outstanding Postdoctoral Fellowship (2017)

🌍 Overseas High-level Talent Award (2017)

🏅 Postdoctoral Foundation First Prize (2017)

📚 Selected Publications

Salt-Based Catalyzer to Aid Heterogeneous Nucleation Enabling >23% Efficient Electron-Transport-Layer-Free Perovskite Solar Cells

Authors: Jidong Deng, Xiaofeng Huang, Yuliang Che, Li Yang, Jinbao Zhang

Publication Year: 2024

Summary: This study explores a salt-based catalyst to enhance heterogeneous nucleation, improving efficiency in perovskite solar cells without the need for an electron transport layer.

Acid Doping of PEDOT:PSS Strengthens Interfacial Compatibility toward Efficient and Stable Perovskite Solar Cells

Authors: Jidong Deng, Yinhu Gao, Yuliang Che, Xiaoli Zhang, Li Yang

Published in: ACS Applied Energy Materials (2024)

Summary: The research investigates acid doping of PEDOT:PSS to enhance interfacial compatibility, improving efficiency and stability in perovskite solar cells.

Dipole-Assisted Hole Injection for Efficient Blue Quantum Dot Light-Emitting Diodes

Authors: Youwei Zhang, Xiangtian Xiao, Ruiqiang Xu, Kai Wang, Xiaowei Sun

Published in: Applied Physics Letters (2024)

Summary: This work focuses on dipole-assisted hole injection mechanisms to enhance the performance of blue quantum dot LEDs.

SnO2-Based Interfacial Engineering Towards Improved Perovskite Solar Cells

Authors: Bing’e Li, Chuangping Liu, Xiaoli Zhang

Published in: Nanomaterials (2024)

Citations: 1

Summary: The study discusses SnO2-based interfacial engineering strategies for optimizing perovskite solar cells' efficiency.

Emission-Tunable Inorganic Metal Halide Perovskite Nanocrystals for Passive Q-Switched Fiber Laser

Authors: Chuangping Liu, Shi Lai, Linkun Zhong, Xiaoli Zhang

Published in: Journal of Materials Science: Materials in Electronics (2024)

Summary: The research focuses on emission-tunable metal halide perovskite nanocrystals for passive Q-switched fiber laser applications.

 

 

Assist. Prof. Dr. Dohyung Kim | Solar Cells | Best Researcher Award

Assist. Prof. Dr. Dohyung Kim | Solar Cells | Best Researcher Award

Chungbuk National University, South Korea.

Dohyung Kim is an Assistant Professor in the Department of Advanced Materials Engineering at Chungbuk National University, South Korea. With a rich academic and professional background, he specializes in materials science and engineering, focusing on the development of advanced materials for energy applications, particularly perovskite solar cells. His extensive research contributions include numerous high-impact publications and collaborations with global research institutions.

Profile

Scopus

Google Scholar

Education 🎓

Dr. Dohyung Kim is an accomplished materials scientist with a strong academic foundation in Materials Science and Engineering. He earned his PhD from the University of New South Wales, Sydney, Australia (2015–2019), where he focused on advancing innovative materials and technologies. Prior to this, he completed his Master of Engineering in Materials Science and Engineering at Korea University, Seoul, Korea (2011–2013), where he developed expertise in material characterization and design. Dr. Kim began his academic journey at the Seoul National University of Science and Technology, Seoul, Korea, earning his Bachelor of Engineering in Materials Science and Engineering (2005–2011). His educational background reflects a comprehensive understanding of materials science, from fundamental principles to cutting-edge research.

Professional Experience 🏢

Dr. Dohyung Kim has built a distinguished career in academia and research, holding key positions in prestigious institutions. Since March 2024, he has served as an Assistant Professor at Chungbuk National University, Cheongju, Korea, where he focuses on advancing materials science through teaching and research.

Prior to his current role, Dr. Kim was a Senior Researcher at the Korea Institute of Energy Research (KIER), Daejeon, Korea (June 2022 – February 2024), where he contributed to innovative solutions in energy materials. His international research experience includes serving as a Postdoctoral Appointee at Argonne National Laboratory, Lemont, IL, USA (June 2021 – June 2022), and as a Postdoctoral Research Associate in a joint program between the University of Tennessee, Knoxville, USA, and Oak Ridge National Laboratory (ORNL) (August 2019 – June 2021).

Dr. Kim’s career began with hands-on experience as an Intern Scientist and Research Trainee at the Korea Institute of Science and Technology (KIST), Seoul, Korea, where he honed his skills in cutting-edge materials research. His diverse background reflects a commitment to addressing global challenges through materials science and engineering.

Research Interests 🔬

Dohyung's research focuses on:

Advanced materials for renewable energy technologies

Perovskite solar cells and their stability

Machine learning applications in materials science

Nano-engineering and interface optimization for photovoltaic devices

Awards & Honors 🏆

Excellent Department Award (2023)
Photovoltaic Research Department, KIER

AFORE 2023 Best Poster Award
The Korean Society for New and Renewable Energy

Energy Grand Prize (2022)
Photovoltaic Research Department, KIER

Dean’s Award (2019)
High-quality PhD thesis, Top 10%

Publications 📚

Advances in Single-Crystal Perovskite Solar Cells: From Materials to Performance
Authors: Tsvetkov, N., Koo, D., Kim, D., Park, H., Min, H.
Journal: Nano Energy (2024), Vol. 130, Article 110069
Citation: 1
This work explores breakthroughs in single-crystal perovskite solar cells, focusing on their material properties and performance enhancements.

Highly Efficient Wide Bandgap Perovskite Solar Cells With Tunneling Junction by Self-Assembled 2D Dielectric Layer
Authors: Lee, M., Lim, J., Choi, E., Hao, X., Yun, J.S.
Journal: Advanced Materials (2024), Vol. 36, Issue 41, Article 2402053
Citation: 1
This study demonstrates wide-bandgap perovskite solar cells incorporating self-assembled 2D dielectric layers for improved efficiency.

Efficient and Stable CsPbI3 Perovskite Solar Cells With Spontaneously Formed 2D-Cs2PbI2Cl2 at the Buried Interface
Authors: Shah, S.-F.-A., Jeong, I., Park, J., Kim, K., Min, H.
Journal: Cell Reports Physical Science (2024), Vol. 5, Issue 5, Article 101935
Citation: 2
This research highlights stable CsPbI3 perovskite solar cells facilitated by the formation of a 2D-Cs2PbI2Cl2 layer at the interface.

Charge Carrier Transport Properties of Twin Domains in Halide Perovskites
Authors: Kim, D., Yun, J.S., Sagotra, A., Cazorla, C., Seidel, J.
Journal: Journal of Materials Chemistry A (2023), Vol. 11, Issue 31, pp. 16743–16754
Citation: 2
The article investigates the charge carrier transport mechanisms in twin domains of halide perovskites, contributing to a deeper understanding of their electronic properties.

Optimal Solar Cell Sorting Method for High Module Production Reliability
Authors: Kim, Y.-J., Kim, M., Cho, Y., Song, H.-E., Park, S.
Conference: AIP Advances (2023), Vol. 13, Issue 6, Article 065323
This conference paper discusses an optimized solar cell sorting method to ensure reliability and efficiency in module production.