Mr. Hussm Rostum | Computer Science | Best Researcher Award

Mr. Hussm Rostum | Computer Science | Best Researcher Award

Miskolc University, Institute of Automation and Info-communication, Hungary.

Hussam Rostum is a PhD candidate and researcher at the University of Miskolc in Hungary, specializing in computer vision for autonomous drone navigation. With a strong background in telecommunications and electronics, he blends academic excellence with hands-on experience as a part-time software engineer at FIEK. Hussam is known for developing cutting-edge solutions in industrial automation, biomedical imaging, and human–machine interfaces. Fluent in Arabic and English, he brings international insight into interdisciplinary research projects, merging software innovation with engineering systems.

Profile

Scopus
Orcid
Google Scholar

🎓 Education

Hussam holds a BSc and MSc in Telecommunication and Electronic Engineering, equipping him with deep theoretical and practical knowledge in signal processing, system design, and electronics. Currently, he is pursuing a PhD in Information Science at the University of Miskolc, focusing on AI-based vision systems for autonomous drone operations.

💼 Experience

Hussam serves as an Assistant Researcher and Part-time Software Engineer at FIEK, where he builds C# monitoring software, implements PLC-to-PC communications, and automates data workflows using Linux, Docker, and Excel. His professional journey includes work as a Full Stack Developer and Telecom Engineer, with experience in GUI development, DevOps collaboration, and .NET technologies.

🔬 Research Interests

📸 Computer Vision & Image Processing

🤖 Autonomous Systems & Drone Navigation

🩺 Biomedical Imaging & Oxygen Saturation Estimation

🔬 Optical System Design (Zemax)

⚙️ Industrial Automation & Data Visualization

🧠 Human–Machine Interfaces & Sensor Integration

📚 Selected Publications

Enhancing Machine Learning Techniques in VSLAM for Robust Autonomous Unmanned Aerial Vehicle Navigation
📅 2025-04-02 | 📰 Electronics
📌 Focus: Improving Visual SLAM with machine learning for UAVs in complex environments.
🔗 DOI: 10.3390/electronics14071440
👥 Co-author: József Vásárhelyi

Comparing the Effectiveness and Performance of Image Processing Algorithms in Face Recognition
📅 2024-05-22 | 📚 Conference Paper
📌 Focus: Evaluation of various image processing techniques for face recognition applications.
🔗 DOI: 10.1109/ICCC62069.2024.10569864
👥 Co-author: József Vásárhelyi

FPGA Implementation in Mobile Robot Applications: State of the Art Review
📅 2023-12-20 | 📰 Multidiszciplináris Tudományok
📌 Focus: Overview of FPGA-based systems in robotics.
🔗 DOI: 10.35925/j.multi.2023.2.21
👥 Co-authors: Omar M. Salih, Noha Hammami

An Overview of Energies Problems in Robotic Systems
📅 2023-12-14 | 📰 Energies
📌 Focus: Challenges in energy management for robotic systems.
🔗 DOI: 10.3390/en16248060
👥 Co-authors: József Vásárhelyi, Omar M. Salih, Rabab Benotsname

A Review of Using Visual Odometry Methods in Autonomous UAV Navigation in GPS-Denied Environments
📅 2023-12-01 | 📰 Acta Universitatis Sapientiae, Electrical and Mechanical Engineering
📌 Focus: Use of visual odometry for UAVs in GPS-denied settings.
🔗 DOI: 10.2478/auseme-2023-0002
👥 Co-author: József Vásárhelyi

 

 

 

 

Mrs. Golshid Ranjbaran | Artificial Intelligence | Best Researcher Award

Mrs. Golshid Ranjbaran | Artificial Intelligence | Best Researcher Award

University of Saskatchewan, Canada.

Golshid Ranjbaran is a PhD Candidate in Computer Science at the University of Saskatchewan (USASK), specializing in Artificial Intelligence, Machine Learning, and Interpretability. With a Bachelor's degree in Software Engineering and a Master's in Artificial Intelligence from the Science and Research Branch in Iran, he has accumulated several awards, including the Best Paper Award at the IKT Conference in 2021 and Best Researcher at ITRC in 2022. Golshid's research is aimed at advancing AI methodologies and improving machine learning models for real-world applications. He was also a research associate at the Data Science & Big Data Lab in Seville, Spain, in 2023. 🌐

Profile

Google Scholar

Education 🎓

Golshid holds a Bachelor's degree in Software Engineering and a Master's degree in Artificial Intelligence from the Science and Research Branch in Iran. He is currently pursuing a Ph.D. in Computer Science at the University of Saskatchewan (USASK), Canada, where he focuses on AI, machine learning, and interpretability, aiming to bridge the gap between theoretical advancements and practical applications.

Experience 🏢

Golshid has been awarded several prestigious positions and accolades, including a research position at the Data Science & Big Data Lab in Seville, Spain (2023), and was recognized as the Best Researcher at ITRC (2022). He has also contributed to various consultancy projects and industry collaborations, such as working on AI systems at ITRC, smart meters algorithms, and data governance in Iran.

Research Interests 🔍

Enhancing model interpretability through methods like SHAP.

Exploring sentiment analysis for stock market prediction.

Developing augmented techniques for unbalanced tasks in the financial domain.

Improving network security through Moving Target Defense technology.

Investigating Federated Learning for wearable health devices and ontology-based text summarization for efficient information processing.

Awards 🏆

Best Paper Award at the IKT Conference (2021)

Best Researcher Award at the Iran Telecommunication Research Center (ITRC) (2022)

Research Position at the Data Science & Big Data Lab in Seville, Spain (2023)

Nomination for the Gala GSA Award at the University of Saskatchewan (2025).

Selected Publications 📚

C-SHAP: A Hybrid Method for Fast and Efficient InterpretabilityApplied Sciences (Q2 Journal), Published 2025.

Leveraging Augmentation Techniques for Tasks with Unbalancedness within the Financial DomainEPJ Data Science (Q1 Journal), Published 2023.

Investigating Sentiment Analysis of News in Stock Market PredictionInternational Journal of Information and Communication Technology Research, Published 2024.

Unsupervised Learning Ontology-Based Text Summarization Approach with Cellular Learning AutomataJournal of Theoretical and Applied Information Technology, Published 2023.

Analyzing the Effect of News Polarity on Stock Market PredictionProceedings of the 12th International Conference on Information and Knowledge Technology (IKT), Published 2021.