Dr. Muhammad Naveed Khan | Chemical Engineering | Best Researcher Award
Zhejiang university | China
Dr. Muhammad Naveed Khan is an accomplished researcher in applied mathematics and computational fluid dynamics, recognized internationally for his extensive contributions to non-Newtonian fluid modeling, hybrid nanofluid behavior, and advanced numerical simulation techniques. With a strong research foundation built through doctoral training in applied mathematics and continuous postdoctoral work at leading academic institutions, he has established himself as a prolific scholar in contemporary fluid mechanics and heat transfer analysis. Dr. Khan’s research focuses on a wide spectrum of computational and theoretical problems, including partial differential equations, heat and mass transfer analysis, hybrid nanofluid and ternary nanofluid flows, magnetohydrodynamics (MHD), bioconvection, multiphase flow stability, and Newtonian and non-Newtonian fluid behaviors under complex physical constraints. His expertise extends to modern transport theories such as Cattaneo–Christov heat flux, Darcy–Forchheimer porous media flow, swirling and rotational fluid systems, chemically reactive micropolar flows, and mixed convection phenomena. His contributions also include exploring the thermophysical roles of nanomaterials, bio-convection mechanisms, cross-diffusion effects, and entropy generation in next-generation heat transfer systems. With 80 SCI-indexed research publications, Dr. Khan has built a substantial scientific footprint, contributing first-author articles to high-impact journals such as Tribology International, Journal of Molecular Liquids, Case Studies in Thermal Engineering, Surfaces and Interfaces, and Journal of Computational Design and Engineering. His work consistently appears in Q1-ranked journals, demonstrating both scientific rigor and high relevance to global research challenges in energy engineering, fluid mechanics, and material science. His citation metrics—highlighted by more than 1700 citations, an h-index of 25, and an i10-index of 47—reflect his strong influence in the field. He has been recognized among the Top 2% most-cited scientists worldwide by Stanford University for consecutive years, underscoring the global impact of his scholarship. His research engagement includes supervising postgraduate scholars, contributing as a reviewer for more than 30 international scientific journals, and developing advanced computational solutions using COMSOL Multiphysics, MATLAB, MAPLE, and Mathematica. Dr. Khan’s ongoing projects include numerical modeling of drag–lift forces, chemically reactive micropolar systems, MHD nanofluid flows, entropy minimization, and multi-slip non-Newtonian flows over complex geometries. His sustained contributions strengthen theoretical fluid mechanics and support emerging applications in energy systems, environmental modeling, advanced heat exchangers, and high-performance engineering materials.
Profiles: Orcid | Google Scholar
Featured Publications
Khan, A. A., Khan, M. N., Ahammad, N. A., Ashraf, M., Guedri, K., & Galal, A. M. (2022). Flow investigation of second grade micropolar nanofluid with porous medium over an exponentially stretching sheet. Journal of Applied Biomaterials & Functional Materials. https://doi.org/10.1177/22808000221089782
Ahmad, S., Nadeem, S., & Khan, M. N. (2022). Heat enhancement analysis of the hybridized micropolar nanofluid with Cattaneo–Christov and stratification effects. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. https://doi.org/10.1177/09544062211010833
Zhang, J., Ahmed, A., Khan, M. N., Wang, F., Abdelmohsen, S. A. M., & Tariq, H. (2022). Swirling flow of fluid containing (SiO₂) and (MoS₂) nanoparticles analyzed via Cattaneo–Christov theory. Journal of Applied Biomaterials & Functional Materials. https://doi.org/10.1177/22808000221094685
Khan, M. N., Nadeem, S., Abbas, N., & Zidan, A. M. (2021). Heat and mass transfer investigation of a chemically reactive Burgers nanofluid with an induced magnetic field over an exponentially stretching surface. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. https://doi.org/10.1177/09544089211034941
Khan, A. A., Khan, M. N., Nadeem, S., Hussain, S. M., & Ashraf, M. (2021). Thermal slip and homogeneous/heterogeneous reaction characteristics of second-grade fluid flow over an exponentially stretching sheet. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. https://doi.org/10.1177/09544089211064187
Khan, M. N., & Nadeem, S. (2021). MHD stagnation point flow of a Maxwell nanofluid over a shrinking sheet (multiple solution). Heat Transfer. https://doi.org/10.1002/htj.22098