Dinesh Babu M | Engineering | Best Researcher Award

Dr. Dinesh Babu M | Engineering | Best Researcher Award

Rajalakshmi Institute of technology | India 

Dr. M. Dinesh Babu, B.E., M.Tech., Ph.D., is a distinguished academic and researcher recognized among the Top 2% Scientists Worldwide in the subfield of Energy for the year 2023 by Elsevier and Stanford University. He holds a Ph.D. in Energy Systems Engineering from the College of Engineering, Anna University, Chennai, where his doctoral research focused on “Studies on the Effect of Internal Longitudinal Fins and Nanoparticles on the Performance of Solar Flat Plate Collectors.” He also holds an M.Tech. in Energy Systems Engineering from Vellore Institute of Technology (VIT), Vellore, and a B.E. in Mechanical Engineering from Sriram Engineering College, University of Madras, both with First Class distinction. With over 21 years of teaching and research experience, Dr. Dinesh Babu has served in reputed institutions such as Dr. M.G.R. University, Sathyabama University, R.M.K. Engineering College, Panimalar Engineering College, and currently, as a Professor at Rajalakshmi Institute of Technology, Chennai. His academic contributions encompass teaching core subjects like Heat and Mass Transfer, Thermodynamics, Thermal Engineering, Power Plant Engineering, Machine Design, Manufacturing Technology, Environmental Science, and Entrepreneurship Development. Dr. Babu has an outstanding research profile with 93 publications in Scopus, SCI, and Web of Science-indexed journals, achieving a cumulative impact factor of 302.54. His research has garnered over 3,500 citations on Google Scholar (h-index: 32, i10-index: 52), 3,177 citations on Scopus (h-index: 31), and 2,978 citations with 15,220 reads on ResearchGate. He has also published two patents and has four ongoing research papers under review. He currently supervises four Ph.D. research scholars registered under Anna University (Supervisor ID: 3120042). His research interests include renewable energy systems, solar thermal engineering, nanofluids, biofuels, combustion and emission analysis, and sustainable manufacturing. Dr. Babu has designed innovative projects such as a 50 LPD copper solar water heater with a ladder-type heat exchanger and has secured funding through initiatives like the RIT-FIT Seed Money Fund and a SERB project proposal worth ₹16.1 lakhs. An active academic contributor, Dr. Babu serves as a Doctoral Committee Member at Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, and frequently participates as a resource person and reviewer for journals and research programs. He has completed multiple Elsevier Research Academy certifications on topics such as producing highly visible research, academia–industry collaboration, journal impact metrics, and open hardware innovation. Dr. M. Dinesh Babu’s exemplary academic dedication, prolific research output, and consistent pursuit of innovation in the field of energy systems engineering have earned him a reputation as one of India’s leading scholars in sustainable and renewable energy technologies.

Profiles: Scopus | Orcid | Google Scholar

Featured Publications

Yuvarajan, D., Babu, M. D., Beem Kumar, N., & Kishore, P. A. (2018). Experimental investigation on the influence of titanium dioxide nanofluid on emission pattern of biodiesel in a diesel engine. Atmospheric Pollution Research, 9(1), 47–52.

Radhakrishnan, S., Munuswamy, D. B., Devarajan, Y., T., A., & Mahalingam, A. (2018). Effect of nanoparticle on emission and performance characteristics of a diesel engine fueled with cashew nut shell biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40, 1–10.

Sathiyamoorthi, R., Sankaranarayanan, G., Munuswamy, D. B., & Devarajan, Y. (2021). Experimental study of spray analysis for Palmarosa biodiesel‐diesel blends in a constant volume chamber. Environmental Progress & Sustainable Energy, 40(6), e13696.

Devarajan, Y., Munuswamy, D. B., & Mahalingam, A. (2018). Influence of nano-additive on performance and emission characteristics of a diesel engine running on neat neem oil biodiesel. Environmental Science and Pollution Research, 25(26), 26167–26172.

Devarajan, Y., Munuswamy, D. B., Nagappan, B., & Pandian, A. K. (2018). Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine. Heat and Mass Transfer, 54(6), 1803–1811.

Devarajan, Y., Munuswamy, D. B., & Mahalingam, A. (2019). Investigation on behavior of diesel engine performance, emission, and combustion characteristics using nano-additive in neat biodiesel. Heat and Mass Transfer, 55(6), 1641–1650.

Pandian, A. K., Munuswamy, D. B., Radhakrishnan, S., & Devarajan, Y. (2018). Emission and performance analysis of a diesel engine burning cashew nut shell oil biodiesel mixed with hexanol. Petroleum Science, 15(1), 176–184.

Devarajan, Y., Mahalingam, A., Munuswamy, D. B., & Arunkumar, T. (2018). Combustion, performance, and emission study of a research diesel engine fueled with palm oil biodiesel and its additive. Energy & Fuels, 32(8), 8447–8452.

Wojciech Bronisław Ciesielka | Mechanical Engineering | Best Researcher Award

Dr. Wojciech Bronislaw Ciesielka | Mechanical Engineering | Best Researcher Award 

AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, Poland

Dr. Wojciech Bronisław Ciesielka earned his PhD in Technical Sciences at the Faculty of Mechanical Engineering and Robotics in 2002 and has been a faculty member at the Department of Power Systems and Environmental Protection Facilities since 2009, after working at the Department of Mechanics and Vibroacoustics from 1994 to 2009. As founder and mentor of the student scientific club “MechaBajt,” he has supervised over 200 student papers, 5 engineering theses, 125 master’s theses, and co-supervised 2 doctoral dissertations, guiding 14 award-winning theses in faculty competitions and one recognized in “DIAMONDS of AGH.” His research spans intelligent systems, mechanical engineering, robotics, energy and environmental protection systems, and sound engineering, with a focus on designing innovative solutions such as signal-processor-based sound control systems, industrial noise protection, drone control, and methods to improve reliability of power distribution lines under icing conditions. Notable achievements include the patented System for Active Noise Reduction (PL188803B1), Acoustic Maps for Kraków, Katowice, and Warsaw, the Acoustic Climate Management System for Kraków, and control solutions implemented during World Youth Day 2016 in Kraków. His ongoing research addresses reducing fuel and energy consumption in transport and construction. He has collaborated with AGH University of Krakow, Silesian University of Technology, the Institute of Fundamental Technological Research of the Polish Academy of Sciences, PZL Świdnik, Building Research Institute, CIOP–PIB, ArcelorMittal Poland, the Marshal’s Office of the Małopolska Region, and the City of Kraków Office. He is an active member of the Polish Acoustical Society and the League for Noise Prevention, Kraków Branch. With more than 80 publications in indexed journals and conference proceedings, Dr. Ciesielka’s work has garnered significant recognition with over 500 citations and an h-index of 12, reflecting his sustained contributions to sound engineering, intelligent systems, and environmental protection innovations.

Profile: Orcid | Staff Page

Featured Publications

Ciesielka, W. B., & Hamiga, W. M. (2025). Numerical analysis of aerodynamics and aeroacoustics in heterogeneous vehicle platoons: Impacts on fuel consumption and environmental emissions. Energies, 18(19), 5275.

Hamiga, W. M., & Ciesielka, W. B. (2022). Numerical analysis of aeroacoustic phenomena generated by heterogeneous column of vehicles. Energies, 15(13), 4669.

Joao Bordado | Materials Science | Outstanding Scientist Award

Prof Dr. Joao Bordado | Materials Science | Outstanding Scientist Award

Prof Dr. Joao Bordado | IST / UTIS | Portugal

Prof. Dr.-Ing. João Bordado is Full Professor of Chemical Engineering and President of the Scientific Council of C5Lab, with a distinguished career spanning academia and industry. Holding an MSc in Chemistry of Catalytic Processes and a PhD in Chemical Engineering, he was the first Portuguese scientist honored with EURCHEM. After a postdoctoral fellowship in Chemical Organic Synthesis and several years teaching Organic Reaction Mechanisms, he joined Quimigal as Process Engineer, later moving to Hoechst Portugal where he advanced to Research Director and President of Hoechst Ambiente, gaining 25 years of industrial experience. He has authored over 250 peer-reviewed publications and holds 81 patents, most of which have been implemented as industrial processes, demonstrating his commitment to innovation with direct industrial impact. Over the past two decades, his research has focused on projects developed in close collaboration with industrial partners, operating within TRL3–8, and contributing significantly to applied chemical engineering. He has also served as Scientific Coordinator of major European projects including NewAdhesives, Intelpol, Wadisun, Multifat, BioProduction, and Foul-X-Spel, advancing sustainable materials, industrial chemistry, and technology transfer. Through his leadership, Prof. Bordado has built a career that integrates academic excellence with industrial practice, shaping innovative solutions to global challenges in chemical engineering while mentoring future generations of engineers and scientists.

Profiles: Scopus | Orcid

Featured Publications

Bordado, J. C. M., et al. (2024). Unlocking nature’s potential: Modelling Acacia melanoxylon as a renewable resource for bio-oil production through thermochemical liquefaction. Energies.

Bordado, J. C. M., et al. (2024). Exploring bio-based polyurethane adhesives for eco-friendly structural applications: An experimental and numerical study. Polymers.

Bordado, J. C. M., et al. (2024). Life cycle assessment of synthetic natural gas production from captured cement’s CO2 and green H2. Journal of CO2 Utilization.

Bordado, J. C. M., et al. (2024). Carbon-neutral cement: The role of green hydrogen. International Journal of Hydrogen Energy.

Bordado, J. C. M., et al. (2024). The effect of a liquified wood heavy fraction on the rheological behaviour and performance of paving-grade bitumen. Sustainability Switzerland.

Xilai li | Engineering | Best Researcher Award

Mr. xilai li | Engineering | Best Researcher Award

Mr. xilai li | Nanjing University of Aeronautics and Astronautics | China

Mr. Li Xilai, a 25-year-old postgraduate student at Nanjing University of Aeronautics and Astronautics, is pursuing a Master’s degree in Mechanical Engineering at the School of Aeronautics, following his Bachelor’s degree in Aircraft Manufacturing Engineering from the Civil Aviation University of China. His academic foundation covers a wide range of aeronautical subjects, including theoretical mechanics, fluid mechanics, structural dynamics, computational aerodynamics, aeroengine principles, and aeronautical systems engineering. He has developed strong technical expertise in advanced engineering software such as ABAQUS, OPENFAST, VABS, BECAS, Bladed, MATLAB, CAD, SolidWorks, and Origin, along with proficiency in programming languages including Python, MATLAB, and FORTRAN. His research interests center on nonlinear blade modeling, aeroelastic response, and vibration suppression in large-scale wind turbines. He has actively contributed to projects such as offshore wind power integrated numerical simulation software evaluation and flow control simulations for blades and airfoils. His innovative research has resulted in two patent applications related to vibration reduction in wind turbine systems and floating platforms. He has also shared his work at prestigious conferences, presenting on topics such as tuned mass-damper inertia systems for vibration control and the influence of control parameters on flutter boundaries in wind turbines. Recognized as an excellent graduate student and outstanding research leader, he combines strong analytical ability with leadership and teamwork. Optimistic, adaptable, and highly motivated, he demonstrates a strong commitment to advancing renewable energy technologies, particularly in offshore wind engineering, while contributing innovative solutions to future challenges in aerospace and energy systems.

Featured Publications

Li Xilai. Numerical Optimization of Tuned Mass-Damper Inertia Systems for Vibration Control in Wind Turbines. China Aerodynamics Conference Proceedings, cited by 8 articles.

Li Xilai. Influence of Control Parameters on Flutter Boundary of Large Horizontal-Axis Wind Turbines. Mechanics & Renewable Energy Forum Proceedings, cited by 5 articles.

Alejandro Medina Santiago | Engineering | Outstanding Scientist Award

Dr. Alejandro Medina Santiago | Engineering | Outstanding Scientist Award

Secretariat of Science, Humanities, Technology and Innovation | Mexico

Dr. Alejandro Medina Santiago is a Mexican researcher in Electrical Engineering, specializing in VLSI integrated circuit design, neural networks, fuzzy logic, intelligent systems, and Industry 4.0 technologies. He earned his Doctor of Science and Master of Science degrees in Electrical Engineering from the Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), where his doctoral research focused on the design of arithmetic cells using multi-input floating gate devices for reconfigurable circuits in image processing and pattern recognition, and his master’s thesis concentrated on neural network-based classification systems for analog signals. He also holds a degree in Electronics Engineering from the Technological Institute of Tuxtla Gutiérrez. Since 2017, he has been a Researcher at the National Institute of Astrophysics, Optics, and Electronics (INAOE) and is a member of Mexico’s National System of Researchers (SNI Level 1, 2021–2025). His areas of expertise include signal processing, IoT, cybersecurity, deep learning, automotive ecosystem diagnostics, and circuit design. Dr. Medina Santiago has directed and participated in numerous projects, including deep neural networks for automotive systems, automotive embedded platforms, IoT educational initiatives, and agricultural disease detection through georeferenced image processing. He has authored more than 20 indexed journal articles, published a book, and holds four patents in process. Additionally, he contributes as a reviewer and editorial board member for IEEE, MDPI, Springer, and Elsevier. A committed educator, he teaches both undergraduate and postgraduate courses on IoT, artificial intelligence, machine learning, electronics, and intelligent control, while actively mentoring future engineers and researchers.

Profile: Orcid

Featured Publications

Medina-Santiago, A., et al. (2025). Machine Learning-Powered IDS for Gray Hole Attack Detection in VANETs. World Electric Vehicle Journal, 16(9), 526. [DOI: 10.3390/wevj16090526]

Orozco Torres, J. A., Medina Santiago, A., et al. (2025). A Data-Driven Approach Using Recurrent Neural Networks for Material Demand Forecasting in Manufacturing. Logistics, 9(3), 130. [DOI: 10.3390/logistics9030130]

Aguilar-González, A., Medina Santiago, A. (2025). Road Event Detection and Classification Algorithm Using Vibration and Acceleration Data. Algorithms, 18(3), 127. [DOI: 10.3390/a18030127]

Orozco Torres, J. A., Medina Santiago, A., et al. (2024). Multilayer Fuzzy Inference System for Predicting the Risk of Dropping Out of School at the High School Level. IEEE Access, 12, 3425548. [DOI: 10.1109/ACCESS.2024.3425548]

Bermúdez Rodríguez, J. I., Medina Santiago, A., et al. (2024). Fault Diagnosis for Takagi-Sugeno Model Wind Turbine Pitch System. IEEE Access, 12, 3361285. [DOI: 10.1109/ACCESS.2024.3361285]

Mona Salam | Engineering | Best Researcher Award

Dr. Mona Salam | Engineering | Best Researcher Award

Dr. Mona Salam | Unveristy Of Technology Sydney | Australia

Dr. Mona Salam is a Senior Lecturer in Construction Project Management at the University of Technology Sydney, bringing extensive expertise in interdisciplinary collaboration and resilient housing. Holding a PhD in Design Management from UTS, a Master of Engineering Studies in Construction Management from the University of Auckland, and a Bachelor in Civil (Structural) Engineering from Ain Shams University, she combines deep theoretical knowledge with practical engineering and academic leadership. Her teaching spans project strategy, construction technology, and professional practice, while her research focuses on collaborative design processes, inclusion in built environments, and climate resilience. Dr. Salam leads Women in Built Environment (WiBE), supporting hundreds of students through mentorship and development. Her work is driven by innovation and social equity, bridging academic rigour with real-world impact.

Profile

Orcid

Education 

Dr. Mona Salam’s academic journey reflects a strong interdisciplinary foundation in civil and construction engineering. She earned her Bachelor of Civil Engineering with a specialization in Structural Engineering from Ain Shams University in Cairo, equipping her with a robust understanding of engineering principles. She then pursued a Master of Engineering Studies in Construction Management at the University of Auckland, where she developed advanced skills in managing complex construction projects. Dr. Salam completed her PhD in Design Management at the University of Technology Sydney, where her doctoral research emphasized collaborative processes in construction design and delivery. This progression from technical engineering into construction management and design strategy has enabled her to approach project challenges holistically, integrating structural rigor with design coordination and management strategies.

Experience 

Dr. Salam’s academic career spans over a decade of progressive roles at the University of Technology Sydney. Beginning as a subject coordinator and tutor, she supported core modules in construction technology, project management, and structures. She then advanced to Lecturer in Built Environment, leading and delivering modules such as Managing a Construction Business and Project Management Integration. As a Senior Lecturer, she now coordinates courses in Project Strategy & Leadership, Construction Technology, and Professional Practice. Her leadership extends beyond teaching, contributing to key faculty committees including the DAB Faculty Board, Workload Committee, Education Quality Committee, and the First and Further Year Experience (FFYE) transition initiative. This combination of teaching excellence, curriculum innovation, and institutional service reflects her dedication to advancing both academic programs and the broader educational environment.

Research Interests

Dr. Salam’s research centers on enhancing interdisciplinary collaboration, inclusion, and resilience within the built environment. Her work in “Assessing Interdisciplinary Collaboration in the Detailed Design Phase of Construction Projects” (2024) uses practice-based inter-organisational theory to examine how trust, defined roles, and iterative cost alignment facilitate effective teamwork in complex design phases. In her chapter “Australian Case: Black Summer Bushfires” ), she developed a retrofit toolkit tailored for older Australians in bushfire-prone regions, based on case studies in Bega Valley and Noosa Shires. Funded by national grants, the toolkit addresses accessibility and resilience for vulnerable rural populations . Her broader interests encompass inclusive design, women’s experiences in construction education and workplace settings, and climate-resilient housing solutions shaped by community-centred methodologies.

Awards 

Dr. Mona Salam’s leadership and innovative teaching have been recognized through several recent honors. she received an Honourable Mention for Innovative Use of Technology and Learning in Education, highlighting her integration of advanced digital tools to enhance student engagement. That same year, she earned an Award for Academic Leadership, acknowledging her strategic contributions in curriculum development and student support. Beyond these accolades, Dr. Salam serves as Academic Lead for Women in Built Environment (WiBE), where she leads a strategic initiative supporting female students in Construction Project Management and Property Economics. Through the WiBE Canvas platform, she provides academic, professional, and wellness support, secures scholarships, and fosters industry partnerships—demonstrating her commitment to equity and community impact within the built environment sector.

Publication Top Notes

Developing Multi-Modal Communication Tools for Retrofit Guidance in Ageing Bushfire-Prone Communities

Collaboration in the Detailed Design Phase of Construction Projects – A Study of Interdisciplinary Teams

Exploring Interdisciplinary Collaboration in the Detailed Design Phase of Construction Projects

Exploring Interdisciplinary Collaboration in Construction: Phases and Patterns of Interaction in Detailed Design Meetings

Collaboration to Improve Constructability in Detailed Design Phase – Can BIM and Relational Contracting Help?

Conclusion 

Dr. Mona Salam exemplifies a forward-thinking academic whose work bridges technical expertise, collaborative innovation, and social equity in the built environment. With a solid educational foundation and progressive academic roles, she brings insight and leadership to construction management and design strategy. Her research push boundaries—from facilitating interdisciplinary collaboration and enhancing design delivery, to crafting climate-resilient solutions tailored for vulnerable communities. Recognized for her pedagogical innovation and leadership, Dr. Salam also champions inclusion and women’s advancement through WiBE. Her combined focus on resilience, equity, and collaboration positions her as a visionary contributor to both academia and practice, making her an outstanding nominee for any award recognizing excellence and impact in construction education and research.

Xueliang wang | Engineering | Best Researcher Award

Dr. Xueliang wang | Engineering | Best Researcher Award

Dr. Xueliang wang | NingboTech University | China

Dr. Xueliang Wang is a promising early-career scholar serving as a Lecturer at NingboTech University, affiliated with Zhejiang University. With a solid academic foundation and focused expertise in mechanical engineering and energy systems, he has established himself as a rising leader in the study of dynamic sealing systems for hydrogen fuel cells. He brings a global perspective to his research, having participated in a Joint Ph.D. Training Program at Blekinge Institute of Technology in Sweden. Since joining NingboTech University, Dr. Wang has excelled in both teaching and research, delivering impactful contributions in foil seal dynamics, gas lubrication mechanisms, and mechanical system reliability. His work addresses critical engineering challenges in advancing hydrogen energy technologies. An active member of the Communist Party, Dr. Wang embodies a commitment to public service, academic leadership, and the pursuit of innovative solutions that bridge theoretical research and industrial application.

Profile

Scopus

Education & Professional Experience

Dr. Xueliang Wang earned his Ph.D. in Engineering through a joint program between Blekinge Institute of Technology (BTH), Sweden, and a Chinese institution, gaining valuable international exposure that shaped his research trajectory in high-performance fuel cell sealing systems. He serves as a Lecturer at NingboTech University, affiliated with Zhejiang University, where he teaches core engineering subjects including Engineering Graphics (B), Numerical Computation Methods, and Elastic Mechanics. His responsibilities extend to mentoring student research projects and contributing to institutional development. Dr. Wang has established strong collaborations with industry partners, leading multiple enterprise-funded and government-supported research projects. His work focuses on innovative sealing technologies, dynamic gas lubrication mechanisms, and leakage reduction strategies for advanced hydrogen fuel cell systems. Combining excellence in teaching with impactful applied research, he is recognized as a well-rounded academic who bridges theoretical engineering knowledge with practical, industry-driven innovation.

Research Interests

Dr. Wang’s primary research interest lies in dynamic foil sealing technologies for fuel cell systems, with broader applications in hydrogen-air compressors, marine sealed pumps, and gas film lubrication mechanisms. His work explores interfacial gas lubrication, surface roughness effects, and heterogeneous material compatibility to improve sealing performance under extreme conditions. These studies are critical for advancing the safety, reliability, and efficiency of clean energy technologies, particularly in hydrogen fuel cell systems. He is especially focused on the flow evolution mechanisms and leakage control under dynamic excitation, which are vital for optimizing fuel cell longevity and environmental compliance. His current portfolio includes five funded research projects from provincial and municipal bodies, addressing issues from nonlinear seal dynamics to PTV diaphragm box seals. Through both theoretical modeling and experimental validation, Dr. Wang’s research delivers actionable insights to industry partners and contributes to the advancement of sustainable engineering technologies.

Awards

Dr. Wang has received multiple prestigious awards. Most notably, he earned the First Prize in University Teaching Achievement Awards, showcasing his dual excellence in pedagogy and content delivery. His paper was honored with the Excellent Paper Award at the 14th National Conference on Dry Gas Seals, a notable accolade in the mechanical engineering community that affirms the originality and applicability of his work in foil gas film seals. His selection for multiple provincial-level projects also reflects peer and institutional recognition of his research capability and leadership. Furthermore, his rapid ascent in academia, marked by six published research papers, two patent applications, and several research grants, underscores his status as a rising star in the fields of hydrogen energy and precision mechanical design. These honors highlight both his technical expertise and his contribution to national research priorities.

Publications Top Notes

Title: A Photothermal-Responsive and Glucose-Responsive Antibacterial Hydrogel Featuring Tunable Mechanical Properties
Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Authors: Wang Xueliang,

Title: Acoustic Emission Signal Characteristics of Flexible Foil Gas Film Seal Under Actual Surface Conditions
Journal: Tribology Transactions  – EI Indexed
Authors: Wang Xueliang,

Title: Turbulent Characteristics Analysis of Flexible Foil Cylindrical Gas Film Seal Considering Surface Roughness
Journal: CIESC Journal  – EI Indexed
Authors: Wang Xueliang,

Conclusion

Dr. Xueliang Wang’s professional trajectory, marked by a combination of international research exposure, pedagogical excellence, and innovative project execution, makes him a strong candidate for the Best Researcher Award. His contributions to the development of high-efficiency fuel cell seal systems directly support the advancement of sustainable hydrogen energy technologies—an area of global strategic importance. With multiple active research grants, high-quality publications, and recognized teaching success, Dr. Wang exemplifies the qualities of a forward-thinking and impactful researcher. His ability to integrate theory with real-world application, especially through collaborations with industry and government projects, showcases leadership, relevance, and innovation. Recognizing his work with this award will not only honor his achievements but also spotlight an emerging leader dedicated to engineering a cleaner, more efficient energy future.

Fatima-Ezzahrae Jabri | Engineering | Best Paper Award

Dr. Fatima-Ezzahrae Jabri  | Engineering | Best Paper Award

Dr. Fatima-Ezzahrae Jabri | National School of Applied Sciences Morocco | Belgium

Dr. Fatima Ezzahrae Jabri is a driven Moroccan Ph.D. candidate in Mechanical Engineering with a sharp focus on polymer additive manufacturing and laser sintering technologies. Born in Fez and currently based in Tangier, she is pursuing her doctorate at the National School of Applied Sciences, ENSA Tangier, where she contributes significantly to the Innovative Technologies Laboratory. Her thesis involves a robust experimental and numerical study of the laser additive manufacturing (SLS) process for polymers under the mentorship of Professors Rachid El Alaiji and Aissa Ouballouch. Fatima has exemplified excellence across academic, technical, and international platforms, combining hands-on engineering experience with cutting-edge research. Her global exposure includes a doctoral research stay at HEPH – Condorcet in Belgium, where she worked on non-destructive defect detection in FDM 3D printing. Known for her leadership, problem-solving mindset, and collaborative attitude, Fatima is a model of emerging scientific talent in the MENA region and beyond.

Profile

Orcid

Education

Dr. Fatima’s academic journey showcases her unwavering commitment to engineering innovation. She earned her Bachelor’s degree in Mechanical Design and Analysis (CAM) from the Faculty of Science and Technology in Fez (2016–2019), followed by a Master of Science and Technology in Mechanical and Production Engineering (GMPr, 2019–2021). Currently, she is enrolled in a prestigious Ph.D. program at ENSA Tangier (2021–2025), working within the Innovative Technologies Laboratory. Her international academic portfolio expanded further through her doctoral research mobility at Haute École Condorcet, Belgium (Feb–Apr 2025), focusing on defect characterization using impulse excitation techniques. Throughout her education, Fatima has cultivated technical mastery over simulation, CAD, and quality control tools, backed by real-world engineering experience. Her teaching engagements at ENSA Tangier span critical foundational subjects like Material Resistance and Industrial Design Drawing, revealing her dual passion for learning and knowledge dissemination.

Experience

Dr. Fatima brings over five years of applied mechanical engineering experience, reflected in her roles across Morocco’s major industrial entities. During her internships with TE Connectivity, Marelli, and Sites Tangier, she took charge of CAD design, production optimization, and digital transformation in manufacturing. Her projects involved redesigning FAKRA cable components using CATIA V5 and Abaqus, enhancing SOPs through 5S audits, and transitioning production lines to paperless environments using Power Apps. As Training Manager at GreenLab Fablab Tangier, she organized workshops, assessed needs, and conducted over 14 training sessions on laser cutting, CAD, and fabrication tools. Fatima also contributed to engineering education through final-year project supervision and juror responsibilities. Her multi-role profile—as an engineer, educator, and innovator—makes her a rare talent bridging academia, applied science, and future-forward technology.

Research Interests

Dr. Fatima’s primary research interests lie in polymer additive manufacturing, especially Selective Laser Sintering (SLS) and Fused Deposition Modeling (FDM). She specializes in optimizing 3D printing processes by integrating defect detection, material behavior analysis, and non-destructive testing. Her recent international project at HEPH–Condorcet involved using impulse excitation techniques to analyze vibration modes and internal defects in polyamide-based FDM parts. Fatima is also pioneering research that connects machine learning and AI to enhance quality prediction in additive manufacturing. Her passion lies in bridging mechanical design with smart digital tools, aiming to elevate manufacturing systems into the era of Industry 4.0. She actively explores composite materials, process-induced defects, surface quality, and thermal behavior of printed parts. Through her teaching and publications, she inspires and enables a new generation of engineers to adopt sustainable, precise, and intelligent manufacturing technologies.

Awards & Recognition

Dr. Fatima’s academic and technical brilliance has been consistently recognized through her international mobility scholarship for doctoral research in Belgium (2025), a highly competitive opportunity awarded based on research merit. As Training Manager at GreenLab Fablab, she led a team that presented the DronEco project during the 7th International Innovation Competition, marking her contribution to real-world problem solving through sustainable design. She has also represented her lab at scientific events like the Design-Innovation-Product-in-Industry DIPI-2022 Workshop. Moreover, her active involvement in programs like INJAZ AL-MAGHRIB’s professional skills development initiative shows her commitment to societal impact. Fatima has played a crucial role as a project supervisor, training coordinator, and jury member at ENSA, enhancing students’ innovation capacity. Her blend of academic performance, leadership in innovation, and contribution to community education makes her a strong nominee for any Rising Researcher or Young Innovator Award.

Publication Top Notes

Characterization of Defects by Non-Destructive Impulse Excitation Technique for 3D Printing FDM Polyamide Materials in Bending Mode

Indirect Effect of Print Surface Bed Temperature on Surface Roughness and Dimensional Accuracy of SLS Polyamide 12 Sintered Parts

Powder Spreading Effects on Laser Powder Bed Fused Parts Quality

A Comprehensive Review of Polymer Materials and Selective Laser Sintering Technology for 3D Printing

A Review on Selective Laser Sintering 3D Printing Technology for Polymer Materials

Conclusion

Dr. Fatima Ezzahrae JABRI exemplifies what a 21st-century researcher and engineer should be—technically adept, globally aware, and socially impactful. Her solid foundation in mechanical design, paired with pioneering research in polymer additive manufacturing, positions her as a leader in transforming industrial practices. She has effectively bridged academic rigor, international collaboration, and real-world application, all before completing her Ph.D. Her dedication to mentoring students, leading scientific initiatives, and contributing to global research makes her a valuable asset to the scientific community. Whether improving defect detection techniques or enhancing material printing quality, Fatima consistently drives innovation with precision and purpose. Her journey so far—and the promise she shows—clearly establishes her as an outstanding candidate for prestigious honors like the “Young Researcher Award”, “Women in Engineering Excellence Award”, or the “Rising Star in Additive Manufacturing Award.”

Hassan Adamu Abubakar | Engineering | Best Researcher Award

Mr. Hassan Adamu Abubakar | Engineering | Best Researcher Award

Mr. Hassan Adamu Abubakar | Advanced Manufacturing Technology Development institute Jalingo | Nigeria

Mr. Adamu Hassan Abubakar is a dedicated Nigerian engineer and researcher whose passion lies in sustainable development through advanced materials science and minerals engineering. He currently serves as Assistant Chief Engineer at the Advanced Manufacturing Technology Development Institute (AMTDI) in Jalingo under NASENI and also contributes as a part-time lecturer at Taraba State University and visiting faculty at AUST, Abuja. With over a decade of academic and industrial engagement, Mr. Adamu has significantly impacted solid minerals research in Nigeria, especially in barite ore processing and refractory ceramics. A hands-on professional, he also mentors engineering students and conducts capacity-building workshops. His expertise ranges from material characterization and composite fabrication to nanoscale fracture mechanics. Adamu is known for his blend of practical engineering problem-solving and innovative R&D approaches, making him a fitting candidate for international recognition in minerals engineering.

Profile

Orcid

Education

Mr. Adamu Hassan Abubakar’s academic journey reflects a strong commitment to engineering excellence. He earned his Bachelor of Engineering in Mechanical Engineering from the Federal University of Technology Yola in 2011 and went on to complete a Master of Engineering in Production and Industrial Engineering at Modibbo Adama University of Technology Yola in 2019. He is currently pursuing his Ph.D. in Materials Science and Engineering at the African University of Science and Technology (AUST), Abuja, expected to complete in 2026. His doctoral research focuses on multiscale fracture and crystallographic behavior of barite ore, aimed at enhancing mineral recovery technologies. His solid educational foundation, complemented by certifications in data science, computer appreciation, and project-based learning in the U.S., equips him with interdisciplinary skills essential for innovation in engineering research and development.

Experience

Mr. Adamu brings a rich blend of academic and field experience. Currently, he is Assistant Chief Engineer at AMTDI–NASENI, leading material assessment, internal quality assurance, and mentoring roles since 2021. Earlier, he served as Senior Engineer (2018–2021), driving research on mechanical parts using CAD software. He also shares his knowledge as a part-time lecturer at Taraba State University (2021–2023) and visiting faculty at AUST Abuja (2024–present). His professional contributions include mentoring undergraduate researchers, conducting laboratory experiments on barite, and guiding R&D strategy design. Through affiliations with mineral research groups like DAF Materials and Mineral Research Group and AUST Baryte Research Group, Adamu maintains a robust connection between academia and applied research. He demonstrates exceptional ability to merge field operations with scholarly insight, strengthening Nigeria’s mineral processing sector.

Research Interests

Mr. Adamu’s research is deeply rooted in the sustainable utilization of solid minerals and advanced materials development. His core areas include the characterization of barite ore, production of ceramic composites, and crystallographic studies for mineral liberation. His ongoing Ph.D. dissertation delves into nanoscale fracture behavior of barite minerals to improve separation and recovery in mineral processing. He is also involved in innovative projects such as the valorization of clay, paper sludge, rice husk, and bagasse for low-cost bricks, contributing to green engineering and affordable housing. His research group affiliations and participation in international conferences display his commitment to advancing material science for energy-efficient and environmentally friendly solutions. His work directly supports Nigeria’s goal of mineral resource beneficiation and domestic industrialization.

Awards & Recognition

Mr. Adamu has been consistently recognized for his commitment to academic and professional excellence. He is a Fellow of COMPASS USA (2025) and holds a Professional Diploma in Data Science (2025). Earlier accolades include the Certificate of Achievement in Project Citizen (USA, 2002) and National Certificate of Service (NYSC, 2012). His early foundation in computing was laid at ABTI American University (2007), and his scientific aptitude was acknowledged with a Certificate of Award by the NMC Center, Abuja . He is a registered member of esteemed bodies like COREN (2018), Nigerian Institute of Mechanical Engineers (2022), and Nigerian Association of Technologists in Engineering (2012). These recognitions underscore his dual excellence in academic leadership and field innovation, aligning him with national and international research objectives in engineering.

Publications Top Notes

Mechanical Loading of Barite Rocks: A Nanoscale Perspective

Gravity concentration of fine particles complex ores-containing baryte using laboratory-built mineral jig

Production and optimization of the refractory properties of blended Nigerian clay for high-temperature application; a non-stochastic optimization approach

Conclusion

Mr. Adamu Hassan Abubakar is an accomplished engineer and researcher, committed to fostering mineral-based technological innovations with practical, scalable impacts. His contributions to barite mineral processing, sustainable materials development, and academic mentoring make him a strong candidate for the International Research Award in Minerals and Materials Engineering. With a unique combination of technical expertise, academic rigor, and community engagement, he stands out as a leader shaping the future of minerals research in Africa. His interdisciplinary outlook, cross-institutional teaching, and collaborative research projects make him well-positioned to receive global recognition for his innovative work in sustainable mineral utilization and capacity development.

Assoc. Prof. Dr. Lei Wang | Automatic Control Systems | Best Researcher Award

Assoc. Prof. Dr. Lei Wang | Automatic Control Systems | Best Researcher Award

Wuxi University, China.

Dr. Wang Lei is an Associate Professor at Wuxi University, specializing in intelligent control systems. With a strong background in artificial intelligence applications in automation, he has led over 10 major research projects, published more than 30 peer-reviewed papers, and holds 20+ patents and 11 software copyrights. He has international training experience in Thailand, Taiwan, Poland, and the UK, enriching his global academic perspective.

Profile

Scopus
Orcid

🎓 Education

Dr. Wang Lei pursued extensive academic training, including joint doctoral programs funded by China’s national “111 Plan”, conducting research in institutions like Green Mountain University (Poland) and the University of Southampton (UK). His master's studies included training at Prince Songkhla University (Thailand) and Yunlin University of Science and Technology (Taiwan).

💼 Experience

Currently an Associate Professor at Wuxi University, Wang Lei has spearheaded numerous provincial and national research projects, including collaborations with the Ministry of Education, Wuxi Science and Technology Bureau, and the National Natural Science Foundation of China. His editorial roles include reviewing for journals like International Journal of Robust and Nonlinear Control and Security and Communication Networks.

🔬 Research Interests

His research focuses on the application of artificial intelligence in automatic control systems, covering areas such as iterative learning control, dynamic observers, fuzzy systems, and actuator fault tolerance.

🏆 Awards & Patents

Principal investigator of 10+ funded projects including Jiangsu Provincial Natural Science and Wuxi “Light of Taihu Lake” programs.

Holder of 20+ patents, including “A trajectory tracking method for non-repetitive time-varying systems”.

Recognized with support from national initiatives such as the “111 Plan”.

📚 Notable Publications

🆕 2025

Output feedback based PD-type iterative learning fault-tolerant control for uncertain discrete systems with actuator faults
📘 Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
🔗 DOI: 10.1177/09596518241263003
👥 Yanxia Shen, Wei Zou, Lei Wang

🔬 2024

An innovative dynamic observer for nonlinear interconnected systems with uncertainties
📘 Transactions of the Institute of Measurement and Control
🗓 Published: 2024-10-23
🔗 DOI: 10.1177/01423312241274007
👥 Nan Ji, Lei Wang, Xinggang Yan, Dezhi Xu

Iterative learning control with parameter estimation for non-repetitive time-varying systems
📘 Journal of the Franklin Institute
🗓 Published: 2024-02
🔗 DOI: 10.1016/j.jfranklin.2024.01.011
👥 Lei Wang, Ziwei Huangfu, Ruiwen Li, Xiewen (Sitman) Wen, Yuan Sun, Yiyang Chen

📊 2023

Design of robust fuzzy iterative learning control for nonlinear batch processes
📘 Mathematical Biosciences and Engineering
🔗 DOI: 10.3934/mbe.2023897
👥 Wei Zou, Yanxia Shen, Lei Wang

A Soft Actor-Critic Approach for a Blind Walking Hexapod Robot with Obstacle Avoidance
📘 Actuators
🗓 Published: 2023-10-21
🔗 DOI: 10.3390/act12100393
👥 Lei Wang, Li Ruiwen, Ziwei Huangfu, Yishan Feng, Yiyang Chen

Fully Distributed, Event-Triggered Containment Control of Multi-Agent Systems
📘 Applied Sciences
🗓 Published: 2023-10-07
🔗 DOI: 10.3390/app131911039
👥 Lei Wang, Guanwen Chen, Tai Li, Ruitian Yang

Slowness or Autocorrelation? A serial correlation feature analysis method
📘 Journal of Process Control
🗓 Published: 2023-01
🔗 DOI: 10.1016/j.jprocont.2022.11.010
👥 Qinghua Li, Zhonggai Zhao, Lei Wang