Prof. Dr. Chao Lyu | Energy | Best Researcher Award

Prof. Dr. Chao Lyu | Energy | Best Researcher Award

Harbin Institute of Technology, China.

Prof. Chao Lyu is a distinguished scholar and researcher in electrical engineering, specializing in battery modeling, battery health management, and microgrid optimization. He is a Professor and Doctoral Supervisor at the Harbin Institute of Technology and a Senior Member of IEEE. With a strong academic background and over 50 research publications in international journals and conferences, Prof. Lyu has made significant contributions to the field of energy storage systems and lithium-ion battery technology. His expertise extends to fault diagnosis, performance evaluation, and optimization control methods for energy storage batteries, shaping advancements in sustainable energy solutions.

Profile

Scopus

Google Scholar

πŸŽ“ Education

Prof. Chao Lyu holds a strong academic foundation in electrical engineering. He earned his B.Eng. in Electrical Engineering from Northeast Electric Power University, Jilin, China, in 2001, followed by an M.Sc. in Electrical Engineering from the same institution in 2004. His pursuit of advanced research led him to complete a Ph.D. in Electrical Engineering at Harbin Institute of Technology, China, in 2007. His academic journey has equipped him with extensive expertise in battery modeling, energy storage systems, and microgrid optimization, laying the groundwork for his impactful research and contributions to the field.

πŸ’Ό Professional Experience

Prof. Chao Lyu is a Professor and Doctoral Supervisor at Harbin Institute of Technology, where he leads research in battery modeling, energy storage systems, and microgrid optimization. As a Senior Member of IEEE, he actively contributes to advancements in electrical engineering and battery technology. Beyond academia, he serves as a researcher and consultant, collaborating with State Grid Corporation of China and Guangdong Power Grid Co., Ltd on industry-driven projects focused on battery fault diagnosis, performance evaluation, and optimization control. His work bridges the gap between research and real-world applications, driving innovation in sustainable energy solutions.

πŸ”¬ Research Interests

Battery Modeling & Testing πŸ”‹

Battery Health Management & Fault Diagnosis ⚑

Microgrid Optimization with Energy Storage 🏭

Lithium-ion Battery Performance & Safety πŸ”

Artificial Intelligence for Battery Management πŸ€–

πŸ† Awards & Recognitions

Senior Member, IEEE

Recognized Expert in Battery Technology & Microgrid Systems

πŸ“š Selected Publications

Early Internal Short Circuit Diagnosis for Lithium-Ion Battery Packs Based on Dynamic Time Warping of Incremental Capacity – Batteries, 10(11), 378

Concurrent Multi-Fault Diagnosis of Lithium-Ion Battery Packs Using Random Convolution Kernel Transformation and Gaussian Process Classifier – Energy, 306, 132467 (3 citations)

Model-Free Detection and Quantitative Assessment of Micro Short Circuits in Lithium-Ion Battery Packs Based on Incremental Capacity and Unsupervised Clustering – International Journal of Electrochemical Science, 19(10), 100794 (1 citation)

Digital Twin Modeling Method for Lithium-Ion Batteries Based on Data-Mechanism Fusion Driving – Green Energy and Intelligent Transportation, 3(5), 100162 (3 citations)

Optimization of Lithium-Ion Battery Charging Strategies From a Thermal Safety Perspective – IEEE Transactions on Transportation Electrification, 10(2), pp. 2727–2739

 

 

 

Assist. Prof. Dr. Dohyung Kim | Solar Cells | Best Researcher Award

Assist. Prof. Dr. Dohyung Kim | Solar Cells | Best Researcher Award

Chungbuk National University, South Korea.

Dohyung Kim is an Assistant Professor in the Department of Advanced Materials Engineering at Chungbuk National University, South Korea. With a rich academic and professional background, he specializes in materials science and engineering, focusing on the development of advanced materials for energy applications, particularly perovskite solar cells. His extensive research contributions include numerous high-impact publications and collaborations with global research institutions.

Profile

Scopus

Google Scholar

Education πŸŽ“

Dr. Dohyung Kim is an accomplished materials scientist with a strong academic foundation in Materials Science and Engineering. He earned his PhD from the University of New South Wales, Sydney, Australia (2015–2019), where he focused on advancing innovative materials and technologies. Prior to this, he completed his Master of Engineering in Materials Science and Engineering at Korea University, Seoul, Korea (2011–2013), where he developed expertise in material characterization and design. Dr. Kim began his academic journey at the Seoul National University of Science and Technology, Seoul, Korea, earning his Bachelor of Engineering in Materials Science and Engineering (2005–2011). His educational background reflects a comprehensive understanding of materials science, from fundamental principles to cutting-edge research.

Professional Experience 🏒

Dr. Dohyung Kim has built a distinguished career in academia and research, holding key positions in prestigious institutions. Since March 2024, he has served as an Assistant Professor at Chungbuk National University, Cheongju, Korea, where he focuses on advancing materials science through teaching and research.

Prior to his current role, Dr. Kim was a Senior Researcher at the Korea Institute of Energy Research (KIER), Daejeon, Korea (June 2022 – February 2024), where he contributed to innovative solutions in energy materials. His international research experience includes serving as a Postdoctoral Appointee at Argonne National Laboratory, Lemont, IL, USA (June 2021 – June 2022), and as a Postdoctoral Research Associate in a joint program between the University of Tennessee, Knoxville, USA, and Oak Ridge National Laboratory (ORNL) (August 2019 – June 2021).

Dr. Kim’s career began with hands-on experience as an Intern Scientist and Research Trainee at the Korea Institute of Science and Technology (KIST), Seoul, Korea, where he honed his skills in cutting-edge materials research. His diverse background reflects a commitment to addressing global challenges through materials science and engineering.

Research Interests πŸ”¬

Dohyung's research focuses on:

Advanced materials for renewable energy technologies

Perovskite solar cells and their stability

Machine learning applications in materials science

Nano-engineering and interface optimization for photovoltaic devices

Awards & Honors πŸ†

Excellent Department Award (2023)
Photovoltaic Research Department, KIER

AFORE 2023 Best Poster Award
The Korean Society for New and Renewable Energy

Energy Grand Prize (2022)
Photovoltaic Research Department, KIER

Dean’s Award (2019)
High-quality PhD thesis, Top 10%

Publications πŸ“š

Advances in Single-Crystal Perovskite Solar Cells: From Materials to Performance
Authors: Tsvetkov, N., Koo, D., Kim, D., Park, H., Min, H.
Journal: Nano Energy (2024), Vol. 130, Article 110069
Citation: 1
This work explores breakthroughs in single-crystal perovskite solar cells, focusing on their material properties and performance enhancements.

Highly Efficient Wide Bandgap Perovskite Solar Cells With Tunneling Junction by Self-Assembled 2D Dielectric Layer
Authors: Lee, M., Lim, J., Choi, E., Hao, X., Yun, J.S.
Journal: Advanced Materials (2024), Vol. 36, Issue 41, Article 2402053
Citation: 1
This study demonstrates wide-bandgap perovskite solar cells incorporating self-assembled 2D dielectric layers for improved efficiency.

Efficient and Stable CsPbI3 Perovskite Solar Cells With Spontaneously Formed 2D-Cs2PbI2Cl2 at the Buried Interface
Authors: Shah, S.-F.-A., Jeong, I., Park, J., Kim, K., Min, H.
Journal: Cell Reports Physical Science (2024), Vol. 5, Issue 5, Article 101935
Citation: 2
This research highlights stable CsPbI3 perovskite solar cells facilitated by the formation of a 2D-Cs2PbI2Cl2 layer at the interface.

Charge Carrier Transport Properties of Twin Domains in Halide Perovskites
Authors: Kim, D., Yun, J.S., Sagotra, A., Cazorla, C., Seidel, J.
Journal: Journal of Materials Chemistry A (2023), Vol. 11, Issue 31, pp. 16743–16754
Citation: 2
The article investigates the charge carrier transport mechanisms in twin domains of halide perovskites, contributing to a deeper understanding of their electronic properties.

Optimal Solar Cell Sorting Method for High Module Production Reliability
Authors: Kim, Y.-J., Kim, M., Cho, Y., Song, H.-E., Park, S.
Conference: AIP Advances (2023), Vol. 13, Issue 6, Article 065323
This conference paper discusses an optimized solar cell sorting method to ensure reliability and efficiency in module production.

 

 

 

Ms. Xiaohui Wang | Microelectronics | Best Researcher Award

Ms. Xiaohui Wang | Microelectronics | Best Researcher Award

South University of Science and Technology of China.

Xiaohui Wang (ζ±ͺζ™“) is a passionate and proactive researcher with a strong team spirit and a positive attitude towards learning. Known for his dedication and enthusiasm, Xiaohui is always focused on achieving the best results and is approachable, honest, and cheerful. With a solid academic background and notable achievements, he has built a strong reputation in his field. Currently, he is pursuing his Ph.D. at the Southern University of Science and Technology, focusing on semiconductor materials physics.

Profile

Orcid

Education πŸŽ“

Xiaohui Wang is currently pursuing his Ph.D. at the Southern University of Science and Technology (2022-Present), focusing on Semiconductor Materials Physics. This advanced research allows him to explore cutting-edge innovations in material science, particularly in semiconductors and nanomaterials. Prior to this, he earned his Master's in Wood Science and Technology from Nanjing Forestry University (2019-2022), where he specialized in Polymer Material Modification, Adhesives, and Modern Chemical Analysis. His academic journey began with a Bachelor's degree in Wood Science and Engineering from Beihua University (2015-2019), where he studied Adhesives and Coatings, as well as Electrical and Electronic Technology. Xiaohui’s diverse educational background has laid a strong foundation for his interdisciplinary approach to research and innovation in materials science.

Experience πŸ’Ό

Xiaohui Wang is currently a doctoral researcher at Southern University of Science and Technology, specializing in Semiconductor Materials Physics. His research is focused on developing advanced semiconductor materials and their applications in electronics, energy storage, and sensor technologies. Xiaohui aims to enhance nanomaterial applications, pushing the boundaries of material science to address key challenges in high-tech industries.

During his time as a Master's researcher at Nanjing Forestry University, Xiaohui worked on Polymer Material Modification, adhesives, and coatings. His work contributed to innovations in modern chemical analysis and sustainable materials, focusing on improving performance for industrial applications, particularly in wood science and forest engineering.

As an undergraduate researcher at Beihua University, Xiaohui laid the foundation for his future research by studying Wood Science and Engineering. He focused on adhesives, coatings, and electrical/electronic technologies, gaining a deep understanding of material properties and their potential applications across multiple fields.

Research Interests πŸ”¬

Biomass-based Carbon Quantum Dots 🌱
Xiaohui explores the potential of carbon quantum dots (CQDs) derived from biomass, aiming to enhance photovoltaic performance in solar cells. By leveraging the properties of these eco-friendly materials, his work contributes to the development of more efficient and sustainable energy solutions.

Semiconductor Materials βš›οΈ
Xiaohui delves into the physics of semiconductor materials, with a focus on the modification of materials at the nano-scale. His work is pivotal in advancing the field of semiconductors, with applications in electronics, energy storage, and sensor technologies.

Polymer Material Modification πŸ§ͺ
In the area of polymer material modification, Xiaohui is dedicated to enhancing adhesives, coatings, and other polymer materials. His research aims to improve the performance and durability of these materials for industrial use, particularly in environmentally sustainable applications.

Optical Coatings and Sensing Technologies πŸ’‘
Xiaohui is also involved in developing novel coating films that exhibit enhanced optical properties, such as fluorescent CQD-doped styrene acrylic emulsion films. Additionally, he innovates in heavy metal sensing techniques using biomass-derived carbon dots, advancing environmental monitoring tools for cleaner water sources.

Awards and Honors πŸ†

Excellent Student (2019-2020): Nanjing Forestry University

Third Prize (2021): National College English Competition, Class A

Excellent Student (2020): Summer School of "Scientific and Technological Innovation and Green Development of Forestry Engineering," Hunan Province

Six-time Recipient: Second-Class and Third-Class Excellent Scholarships

Merit Student (Two-time)

Excellent League Member (Twice)

Excellent Class Cadre (Once)

Project Leader: Jilin University Student Innovation and Entrepreneurship Project

Attendee: 2021 Sustainable Materials Research Summit (SMART) International Conference

Publications Top Notes πŸ“š

Optimization of CuOx/Ga2O3 Heterojunction Diodes for High-Voltage Power Electronics
Journal: Nanomaterials, 2025-01-08

Improved gate leakage current and breakdown voltage of InAlN/GaN MIS-HEMTs by HfAlOx-based charge-trapping layer dielectric and in situ O3 treatment
Journal: Applied Physics Letters, 2025-01-06

Improvement of DC Performance and RF Characteristics in GaN-Based HEMTs Using SiNx Stress-Engineering Technique
Journal: Nanomaterials, 2024-09

High-performance Ξ²-Ga2O3 Schottky barrier diodes with Mg current blocking layer using spin-on-glass technique
Journal: Applied Physics Letters, 2024-09-23

Biomass-based carbon quantum dots for polycrystalline silicon solar cells with enhanced photovoltaic performance
Journal: Energy, 2023-07

 

 

Ms. Aayesha Ahmad | Energy | Best Researcher Award

Ms. Aayesha Ahmad | Energy | Best Researcher Award

Indian Institute of Technology Delhi, India.

Aayesha Sabih Ahmad is a dedicated research scholar at the Indian Institute of Technology (IIT) Delhi, specializing in energy systems optimization and financial modeling of photovoltaic-battery energy storage systems (PV-BESS). With a strong background in electrical engineering and extensive teaching experience, Aayesha aims to contribute to policy frameworks promoting renewable energy adoption and sustainability.

Profile

Orcid

Education πŸŽ“

Aayesha Sabih Ahmad is currently a research scholar at the Centre for Sensors, Instrumentation, and Cyber Physical Systems Engineering, IIT Delhi, where she has been pursuing her Ph.D. since February 2021. Under the guidance of Prof. Sumit K. Chattopadhyay and Prof. B.K. Panigrahi, she focuses on decentralized energy systems and renewable energy optimization. She has also completed coursework in decentralized energy systems, instrumentation design, and research writing.

She earned her Master of Engineering (M.E.) in Electrical Engineering (Power Systems) from BIT Mesra in 2013 with a CGPA of 8.21/10 and her Bachelor of Engineering (B.E.) in Electrical and Electronics Engineering from the same institution in 2011, graduating with a CGPA of 7.56/10. Both degrees have provided her with a strong foundation in electrical engineering, energy systems, and power distribution.

Experience πŸ’Ό

Aayesha Sabih Ahmad has valuable teaching experience as a Part-Time Lecturer at Al Kabir Polytechnic, Jamshedpur (2015–2019), where she delivered lectures and supervised laboratory sessions for courses such as Basic Electrical Engineering, Power Transmission & Distribution, and Power Systems. Her role involved mentoring students and ensuring practical knowledge transfer through hands-on lab experiments.

Additionally, she served as a Visiting Professor at NIT Patna in 2013, where she taught advanced courses on Protection of Power Apparatus and Systems and Power Electronics (Lab). This brief yet significant academic engagement enriched her expertise in power systems and electronic applications, reinforcing her passion for teaching and research.

Research Interests πŸ”

Cost-benefit analysis and financial modeling of photovoltaic-battery energy storage systems (PV-BESS).

Optimization of energy resources for enhanced cost efficiency.

Policy frameworks for renewable energy adoption.

Role of PV-BESS in achieving energy sustainability.

Honors and Awards πŸ†

Research Scholar Fellowship (JRF/SRF) (Feb 2021 – Present)

Graduate Aptitude Test in Engineering (GATE) – All India Rank 6041 (March 2011)

All India Engineering Entrance Examinations (AIEEE) – All India Rank 19,626 (March 2007)

Publications πŸ“š

A Quantitative Assessment of the Economic Viability of Photovoltaic Battery Energy Storage Systems, A.S. Ahmad, S.K. Chattopadhyay, B.K. Panigrahi, Energies 2024, 17, 6279,. Link

Defect Analysis of Thin Film CTGS-based Solar Cells for Performance Optimization, A.S. Ahmad, B.S. Sengar, A. Kumar, 2020 5th IEEE International Conference on Emerging Electronics (ICEE), New Delhi,. Link